Chiral Induced Spin Selectivity as a Spontaneous Intertwined Order
- URL: http://arxiv.org/abs/2005.03656v2
- Date: Thu, 31 Dec 2020 06:32:31 GMT
- Title: Chiral Induced Spin Selectivity as a Spontaneous Intertwined Order
- Authors: Xiaopeng Li, Jue Nan, and Xiangcheng Pan
- Abstract summary: Chiral induced spin selectivity (CISS) describes efficient spin filtering by chiral molecules.
Here we report a multi-orbital theory for CISS, where an effective spin-orbit interaction (SOI) emerges from spontaneous formation of electron-hole pairing.
Our theory may provide important guidance for searching other molecules with CISS effects.
- Score: 2.808255698770643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chiral induced spin selectivity (CISS) describes efficient spin filtering by
chiral molecules. This phenomenon has led to nanoscale manipulation of quantum
spins with promising applications to spintronics and quantum computing, since
its discovery nearly two decades ago. However, its underlying mechanism still
remains mysterious for the required spin-orbit interaction (SOI) strength is
unexpectedly large. Here we report a multi-orbital theory for CISS, where an
effective SOI emerges from spontaneous formation of electron-hole pairing
caused by many-body correlation. This mechanism produces a strong SOI to the
order of tens of milielectronvolts which could support the large spin
polarization observed in CISS at room temperature. One central ingredient of
our theory is the Wannier functions of the valence and conduction bands
correspond respectively to one- and two-dimensional representation of the
spatial rotation symmetry around the molecule elongation direction. The induced
SOI strength is found to decrease when the band gap increases. Our theory may
provide important guidance for searching other molecules with CISS effects.
Related papers
- Optical Regulation of Chiral-Induced Spin Selectivity [4.788427041690547]
We present a non-perturbative theory that describes how light regulates chiral-induced spin selectivity (CISS)
The research results indicate that 1) light can have opposite effects on the CISS, 2) the difference in CISS is caused by the steady states of nuclei coupled to spin electrons and 3) this steady state differences are caused by the different light-induced Lorentz forces felt by spin-up and spin-down electrons.
arXiv Detail & Related papers (2023-10-17T01:56:04Z) - Floquet-engineered chiral-induced spin selectivity [0.0]
We show that CISS can be observed in achiral systems driven by an external circularly polarized laser field in the framework of Floquet engineering.
To obtain a wider range of energies for large spin polarization, a combination of chiral molecules and light-matter interactions is considered.
arXiv Detail & Related papers (2023-02-20T07:06:17Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Chiral cavity induced spin selectivity [0.0]
Chiral-induced spin selectivity (CISS) is a phenomenon in which electron spins are polarized as they are transported through chiral molecules.
We show that spin selectivity can be realized in achiral materials by coupling electrons to a single mode of a chiral optical cavity.
arXiv Detail & Related papers (2022-09-25T07:25:23Z) - Interplay of Structural Chirality, Electron Spin and Topological Orbital
in Chiral Molecular Spin Valves [0.0]
Chirality has been a property of central importance in chemistry and biology for more than a century, and is now taking on increasing relevance in condensed matter physics.
electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids.
This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications.
arXiv Detail & Related papers (2022-09-16T18:05:29Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Interplay between friction and spin-orbit coupling as a source of spin
polarization [0.0]
We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC)
We show that the model exhibits spin polarization when both terms are finite.
Our findings might help to explain the pronounced effect of chirality on spin distribution and transport in chiral molecules.
arXiv Detail & Related papers (2021-01-13T16:22:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.