Interplay between friction and spin-orbit coupling as a source of spin
polarization
- URL: http://arxiv.org/abs/2101.05173v3
- Date: Wed, 28 Jul 2021 15:56:16 GMT
- Title: Interplay between friction and spin-orbit coupling as a source of spin
polarization
- Authors: Artem G. Volosniev, Hen Alpern, Yossi Paltiel, Oded Millo, Mikhail
Lemeshko, and Areg Ghazaryan
- Abstract summary: We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC)
We show that the model exhibits spin polarization when both terms are finite.
Our findings might help to explain the pronounced effect of chirality on spin distribution and transport in chiral molecules.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study an effective one-dimensional quantum model that includes friction
and spin-orbit coupling (SOC), and show that the model exhibits spin
polarization when both terms are finite. Most important, strong spin
polarization can be observed even for moderate SOC, provided that friction is
strong. Our findings might help to explain the pronounced effect of chirality
on spin distribution and transport in chiral molecules. In particular, our
model implies static magnetic properties of a chiral molecule, which lead to
Shiba-like states when a molecule is placed on a superconductor, in accordance
with recent experimental data.
Related papers
- Enhancement of Chiral-Induced Spin Selectivity via Circularly Polarized
Light [4.788427041690547]
We show how circularly polarized (CP) light enhances CISS effects through strong light-matter interactions.
Our predictions can be very useful in experiments for using CP light to control spin current in chiral molecular junctions.
arXiv Detail & Related papers (2024-02-01T02:13:33Z) - Chiral cavity induced spin selectivity [0.0]
Chiral-induced spin selectivity (CISS) is a phenomenon in which electron spins are polarized as they are transported through chiral molecules.
We show that spin selectivity can be realized in achiral materials by coupling electrons to a single mode of a chiral optical cavity.
arXiv Detail & Related papers (2022-09-25T07:25:23Z) - Interplay of Structural Chirality, Electron Spin and Topological Orbital
in Chiral Molecular Spin Valves [0.0]
Chirality has been a property of central importance in chemistry and biology for more than a century, and is now taking on increasing relevance in condensed matter physics.
electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids.
This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications.
arXiv Detail & Related papers (2022-09-16T18:05:29Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Chiral Induced Spin Selectivity as a Spontaneous Intertwined Order [2.808255698770643]
Chiral induced spin selectivity (CISS) describes efficient spin filtering by chiral molecules.
Here we report a multi-orbital theory for CISS, where an effective spin-orbit interaction (SOI) emerges from spontaneous formation of electron-hole pairing.
Our theory may provide important guidance for searching other molecules with CISS effects.
arXiv Detail & Related papers (2020-05-07T17:59:59Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.