Machine Learning on Graphs: A Model and Comprehensive Taxonomy
- URL: http://arxiv.org/abs/2005.03675v3
- Date: Tue, 12 Apr 2022 03:24:00 GMT
- Title: Machine Learning on Graphs: A Model and Comprehensive Taxonomy
- Authors: Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher R\'e, Kevin
Murphy
- Abstract summary: We bridge the gap between graph neural networks, network embedding and graph regularization models.
Specifically, we propose a Graph Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs.
- Score: 22.73365477040205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a surge of recent interest in learning representations for
graph-structured data. Graph representation learning methods have generally
fallen into three main categories, based on the availability of labeled data.
The first, network embedding (such as shallow graph embedding or graph
auto-encoders), focuses on learning unsupervised representations of relational
structure. The second, graph regularized neural networks, leverages graphs to
augment neural network losses with a regularization objective for
semi-supervised learning. The third, graph neural networks, aims to learn
differentiable functions over discrete topologies with arbitrary structure.
However, despite the popularity of these areas there has been surprisingly
little work on unifying the three paradigms. Here, we aim to bridge the gap
between graph neural networks, network embedding and graph regularization
models. We propose a comprehensive taxonomy of representation learning methods
for graph-structured data, aiming to unify several disparate bodies of work.
Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which
generalizes popular algorithms for semi-supervised learning on graphs (e.g.
GraphSage, Graph Convolutional Networks, Graph Attention Networks), and
unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc)
into a single consistent approach. To illustrate the generality of this
approach, we fit over thirty existing methods into this framework. We believe
that this unifying view both provides a solid foundation for understanding the
intuition behind these methods, and enables future research in the area.
Related papers
- State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph-level Neural Networks: Current Progress and Future Directions [61.08696673768116]
Graph-level Neural Networks (GLNNs, deep learning-based graph-level learning methods) have been attractive due to their superiority in modeling high-dimensional data.
We propose a systematic taxonomy covering GLNNs upon deep neural networks, graph neural networks, and graph pooling.
arXiv Detail & Related papers (2022-05-31T06:16:55Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Learning Graph Representations [0.0]
Graph Neural Networks (GNNs) are efficient ways to get insight into large dynamic graph datasets.
In this paper, we discuss the graph convolutional neural networks graph autoencoders and Social-temporal graph neural networks.
arXiv Detail & Related papers (2021-02-03T12:07:55Z) - Generating a Doppelganger Graph: Resembling but Distinct [5.618335078130568]
We propose an approach to generating a doppelganger graph that resembles a given one in many graph properties.
The approach is an orchestration of graph representation learning, generative adversarial networks, and graph realization algorithms.
arXiv Detail & Related papers (2021-01-23T22:08:27Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Unsupervised Graph Representation by Periphery and Hierarchical
Information Maximization [18.7475578342125]
Invent of graph neural networks has improved the state-of-the-art for both node and the entire graph representation in a vector space.
For the entire graph representation, most of existing graph neural networks are trained on a graph classification loss in a supervised way.
We propose an unsupervised graph neural network to generate a vector representation of an entire graph in this paper.
arXiv Detail & Related papers (2020-06-08T15:50:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.