Generating a Doppelganger Graph: Resembling but Distinct
- URL: http://arxiv.org/abs/2101.09593v1
- Date: Sat, 23 Jan 2021 22:08:27 GMT
- Title: Generating a Doppelganger Graph: Resembling but Distinct
- Authors: Yuliang Ji, Ru Huang, Jie Chen, Yuanzhe Xi
- Abstract summary: We propose an approach to generating a doppelganger graph that resembles a given one in many graph properties.
The approach is an orchestration of graph representation learning, generative adversarial networks, and graph realization algorithms.
- Score: 5.618335078130568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep generative models, since their inception, have become increasingly more
capable of generating novel and perceptually realistic signals (e.g., images
and sound waves). With the emergence of deep models for graph structured data,
natural interests seek extensions of these generative models for graphs.
Successful extensions were seen recently in the case of learning from a
collection of graphs (e.g., protein data banks), but the learning from a single
graph has been largely under explored. The latter case, however, is important
in practice. For example, graphs in financial and healthcare systems contain so
much confidential information that their public accessibility is nearly
impossible, but open science in these fields can only advance when similar data
are available for benchmarking.
In this work, we propose an approach to generating a doppelganger graph that
resembles a given one in many graph properties but nonetheless can hardly be
used to reverse engineer the original one, in the sense of a near zero edge
overlap. The approach is an orchestration of graph representation learning,
generative adversarial networks, and graph realization algorithms. Through
comparison with several graph generative models (either parameterized by neural
networks or not), we demonstrate that our result barely reproduces the given
graph but closely matches its properties. We further show that downstream
tasks, such as node classification, on the generated graphs reach similar
performance to the use of the original ones.
Related papers
- GraphMaker: Can Diffusion Models Generate Large Attributed Graphs? [7.330479039715941]
Large-scale graphs with node attributes are increasingly common in various real-world applications.
Traditional graph generation methods are limited in their capacity to handle these complex structures.
This paper introduces a novel diffusion model, GraphMaker, specifically designed for generating large attributed graphs.
arXiv Detail & Related papers (2023-10-20T22:12:46Z) - SynGraphy: Succinct Summarisation of Large Networks via Small Synthetic
Representative Graphs [4.550112751061436]
We describe SynGraphy, a method for visually summarising the structure of large network datasets.
It works by drawing smaller graphs generated to have similar structural properties to the input graphs.
arXiv Detail & Related papers (2023-02-15T16:00:15Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Explanation Graph Generation via Pre-trained Language Models: An
Empirical Study with Contrastive Learning [84.35102534158621]
We study pre-trained language models that generate explanation graphs in an end-to-end manner.
We propose simple yet effective ways of graph perturbations via node and edge edit operations.
Our methods lead to significant improvements in both structural and semantic accuracy of explanation graphs.
arXiv Detail & Related papers (2022-04-11T00:58:27Z) - Synthetic Graph Generation to Benchmark Graph Learning [7.914804101579097]
Graph learning algorithms have attained state-of-the-art performance on many graph analysis tasks.
One reason is due to the very small number of datasets used in practice to benchmark the performance of graph learning algorithms.
We propose to generate synthetic graphs, and study the behaviour of graph learning algorithms in a controlled scenario.
arXiv Detail & Related papers (2022-04-04T10:48:32Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
We propose a novel non-parametric graph model for constructing the posterior distribution of graph adjacency matrices.
We demonstrate the advantages of this model in three different problem settings: node classification, link prediction and recommendation.
arXiv Detail & Related papers (2020-06-23T21:10:55Z) - Machine Learning on Graphs: A Model and Comprehensive Taxonomy [22.73365477040205]
We bridge the gap between graph neural networks, network embedding and graph regularization models.
Specifically, we propose a Graph Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs.
arXiv Detail & Related papers (2020-05-07T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.