Source-Relaxed Domain Adaptation for Image Segmentation
- URL: http://arxiv.org/abs/2005.03697v2
- Date: Wed, 7 Apr 2021 20:22:45 GMT
- Title: Source-Relaxed Domain Adaptation for Image Segmentation
- Authors: Mathilde Bateson, Hoel Kervadec, Jose Dolz, Herve Lombaert, Ismail Ben
Ayed
- Abstract summary: Domain adaptation (DA) has drawn high interests for its capacity to adapt a model trained on labeled source data to perform well on unlabeled or weakly labeled target data.
Most common DA techniques require the concurrent access to the input images of both the source and target domains.
We propose a novel formulation for adapting segmentation networks, which relaxes such a constraint.
- Score: 22.28746775804126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation (DA) has drawn high interests for its capacity to adapt a
model trained on labeled source data to perform well on unlabeled or weakly
labeled target data from a different domain. Most common DA techniques require
the concurrent access to the input images of both the source and target
domains. However, in practice, it is common that the source images are not
available in the adaptation phase. This is a very frequent DA scenario in
medical imaging, for instance, when the source and target images come from
different clinical sites. We propose a novel formulation for adapting
segmentation networks, which relaxes such a constraint. Our formulation is
based on minimizing a label-free entropy loss defined over target-domain data,
which we further guide with a domain invariant prior on the segmentation
regions. Many priors can be used, derived from anatomical information. Here, a
class-ratio prior is learned via an auxiliary network and integrated in the
form of a Kullback-Leibler (KL) divergence in our overall loss function. We
show the effectiveness of our prior-aware entropy minimization in adapting
spine segmentation across different MRI modalities. Our method yields
comparable results to several state-of-the-art adaptation techniques, even
though is has access to less information, the source images being absent in the
adaptation phase. Our straight-forward adaptation strategy only uses one
network, contrary to popular adversarial techniques, which cannot perform
without the presence of the source images. Our framework can be readily used
with various priors and segmentation problems.
Related papers
- Subject-Based Domain Adaptation for Facial Expression Recognition [51.10374151948157]
Adapting a deep learning model to a specific target individual is a challenging facial expression recognition task.
This paper introduces a new MSDA method for subject-based domain adaptation in FER.
It efficiently leverages information from multiple source subjects to adapt a deep FER model to a single target individual.
arXiv Detail & Related papers (2023-12-09T18:40:37Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - ProSFDA: Prompt Learning based Source-free Domain Adaptation for Medical
Image Segmentation [21.079667938055668]
We propose a textbfPrompt learning based textbfSFDA (textbfProSFDA) method for medical image segmentation.
Our results indicate that the proposed ProSFDA outperforms substantially other SFDA methods and is even comparable to UDA methods.
arXiv Detail & Related papers (2022-11-21T14:57:04Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Target and Task specific Source-Free Domain Adaptive Image Segmentation [73.78898054277538]
We propose a two-stage approach for source-free domain adaptive image segmentation.
We focus on generating target-specific pseudo labels while suppressing high entropy regions.
In the second stage, we focus on adapting the network for task-specific representation.
arXiv Detail & Related papers (2022-03-29T17:50:22Z) - Source-Free Domain Adaptation for Image Segmentation [17.23158602100665]
We introduce a source-free domain adaptation for image segmentation.
Our formulation is based on minimizing a label-free entropy loss defined over target-domain data.
We show the effectiveness of our prior aware entropy minimization in a variety of domain-adaptation scenarios.
arXiv Detail & Related papers (2021-08-06T14:56:31Z) - Privacy Preserving Domain Adaptation for Semantic Segmentation of
Medical Images [13.693640425403636]
Unsupervised domain adaptation (UDA) is proposed to adapt a model to new modalities using solely unlabeled target domain data.
We develop an algorithm for UDA in a privacy-constrained setting, where the source domain data is inaccessible.
We demonstrate the effectiveness of our algorithm by comparing it to state-of-the-art medical image semantic segmentation approaches.
arXiv Detail & Related papers (2021-01-02T22:12:42Z) - FDA: Fourier Domain Adaptation for Semantic Segmentation [82.4963423086097]
We describe a simple method for unsupervised domain adaptation, whereby the discrepancy between the source and target distributions is reduced by swapping the low-frequency spectrum of one with the other.
We illustrate the method in semantic segmentation, where densely annotated images are aplenty in one domain, but difficult to obtain in another.
Our results indicate that even simple procedures can discount nuisance variability in the data that more sophisticated methods struggle to learn away.
arXiv Detail & Related papers (2020-04-11T22:20:48Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.