論文の概要: SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for
Multi-Document Summarization
- arxiv url: http://arxiv.org/abs/2005.03724v1
- Date: Thu, 7 May 2020 19:54:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 23:41:04.244666
- Title: SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for
Multi-Document Summarization
- Title(参考訳): SUPERT:マルチドキュメント要約のための教師なし評価基準の新しいフロンティアに向けて
- Authors: Yang Gao, Wei Zhao, Steffen Eger
- Abstract要約: 本稿では,その意味的類似度を疑似参照要約と比較することにより,要約の質を評価するSUPERTを提案する。
最先端の教師なし評価指標と比較すると、SUPERTは人間の評価と18~39%の相関がある。
我々は、ニューラルネットワークに基づく強化学習要約器を誘導する報酬としてSUPERTを使用し、最先端の教師なし要約器と比較して良好な性能を得る。
- 参考スコア(独自算出の注目度): 31.082618343998533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study unsupervised multi-document summarization evaluation metrics, which
require neither human-written reference summaries nor human annotations (e.g.
preferences, ratings, etc.). We propose SUPERT, which rates the quality of a
summary by measuring its semantic similarity with a pseudo reference summary,
i.e. selected salient sentences from the source documents, using contextualized
embeddings and soft token alignment techniques. Compared to the
state-of-the-art unsupervised evaluation metrics, SUPERT correlates better with
human ratings by 18-39%. Furthermore, we use SUPERT as rewards to guide a
neural-based reinforcement learning summarizer, yielding favorable performance
compared to the state-of-the-art unsupervised summarizers. All source code is
available at https://github.com/yg211/acl20-ref-free-eval.
- Abstract(参考訳): 本研究では,人文参照要約や人文アノテーション(嗜好,評価など)を必要としない,教師なし多文書要約評価指標について検討する。
本稿では,その意味的類似度を疑似参照要約,すなわち,文脈的埋め込みとソフトトークンアライメント技術を用いて,ソース文書から選択した有意な文とで評価し,要約の質を評価する。
最先端の教師なし評価指標と比較すると、SUPERTは人間の評価と18~39%の相関がある。
さらに,SPERTをニューラルネットワークを用いた強化学習要約器の指導に利用し,最先端の教師なし要約器と比較して良好な性能を示した。
すべてのソースコードはhttps://github.com/yg211/acl20-ref-free-evalで入手できる。
関連論文リスト
- Using Similarity to Evaluate Factual Consistency in Summaries [2.7595794227140056]
抽象要約器は流動的な要約を生成するが、生成したテキストの事実性は保証されない。
本稿では,ゼロショット事実性評価尺度であるSBERTScoreを提案する。
実験の結果,SBERTScoreでは,各手法の強度が異なることが示唆された。
論文 参考訳(メタデータ) (2024-09-23T15:02:38Z) - Evaluating and Improving Factuality in Multimodal Abstractive
Summarization [91.46015013816083]
そこで我々は,CLIPBERTScoreを提案する。
ゼロショットにおけるこの2つの指標の単純な組み合わせは、文書要約のための既存の事実度指標よりも高い相関性が得られることを示す。
本分析は,CLIPBERTScoreとそのコンポーネントの信頼性と高い相関性を示す。
論文 参考訳(メタデータ) (2022-11-04T16:50:40Z) - SMART: Sentences as Basic Units for Text Evaluation [48.5999587529085]
本稿では,このような制約を緩和するSMARTと呼ばれる新しい指標を提案する。
文をトークンの代わりにマッチングの基本単位として扱い,ソフトマッチ候補と参照文に文マッチング関数を用いる。
この結果から,提案手法とモデルベースマッチング関数とのシステムレベルの相関は,全ての競合する指標よりも優れていた。
論文 参考訳(メタデータ) (2022-08-01T17:58:05Z) - CTRLEval: An Unsupervised Reference-Free Metric for Evaluating
Controlled Text Generation [85.03709740727867]
制御されたテキスト生成モデルを評価するために,教師なし参照自由度であるEvalを提案する。
Evalは、事前訓練された言語モデルから生成確率をモデルトレーニングなしで組み立てる。
実験の結果,我々の測定値は他の基準値よりも人間の判断と高い相関関係があることが判明した。
論文 参考訳(メタデータ) (2022-04-02T13:42:49Z) - WIDAR -- Weighted Input Document Augmented ROUGE [26.123086537577155]
提案する指標WIDARは,基準要約の品質に応じて評価スコアを適応させるように設計されている。
提案指標は, 整合性, 整合性, 流速性, 人的判断の関連性において, ROUGEよりも26%, 76%, 82%, 15%の相関関係を示した。
論文 参考訳(メタデータ) (2022-01-23T14:40:42Z) - A Training-free and Reference-free Summarization Evaluation Metric via
Centrality-weighted Relevance and Self-referenced Redundancy [60.419107377879925]
トレーニング不要かつ参照不要な要約評価指標を提案する。
我々の測定基準は、集中度重み付き関連度スコアと自己参照冗長度スコアからなる。
提案手法は,複数文書と単一文書の要約評価において,既存の手法よりも大幅に優れる。
論文 参考訳(メタデータ) (2021-06-26T05:11:27Z) - Unsupervised Reference-Free Summary Quality Evaluation via Contrastive
Learning [66.30909748400023]
教師なしコントラスト学習により,参照要約を使わずに要約品質を評価することを提案する。
具体的には、BERTに基づく言語的品質と意味情報の両方をカバーする新しい指標を設計する。
ニューズルームとCNN/デイリーメールの実験では,新たな評価手法が参照サマリーを使わずに他の指標よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-05T05:04:14Z) - SummPip: Unsupervised Multi-Document Summarization with Sentence Graph
Compression [61.97200991151141]
SummPipはマルチドキュメント要約のための教師なしの手法である。
元の文書を文グラフに変換し、言語表現と深層表現の両方を考慮に入れます。
次に、スペクトルクラスタリングを適用して複数の文のクラスタを取得し、最後に各クラスタを圧縮して最終的な要約を生成する。
論文 参考訳(メタデータ) (2020-07-17T13:01:15Z) - SueNes: A Weakly Supervised Approach to Evaluating Single-Document
Summarization via Negative Sampling [25.299937353444854]
本研究は,参照要約の存在を伴わない,弱教師付き要約評価手法に対する概念実証研究である。
既存の要約データセットの大量データは、文書と破損した参照要約とのペアリングによってトレーニングのために変換される。
論文 参考訳(メタデータ) (2020-05-13T15:40:13Z) - Reference and Document Aware Semantic Evaluation Methods for Korean
Language Summarization [6.826626737986031]
本稿では,参照要約と原文書の意味を反映した評価指標を提案する。
次に,人間の判断とメトリクスの相関性を改善する手法を提案する。
論文 参考訳(メタデータ) (2020-04-29T08:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。