Inference, Prediction, and Entropy-Rate Estimation of Continuous-time,
Discrete-event Processes
- URL: http://arxiv.org/abs/2005.03750v1
- Date: Thu, 7 May 2020 20:54:19 GMT
- Title: Inference, Prediction, and Entropy-Rate Estimation of Continuous-time,
Discrete-event Processes
- Authors: S. E. Marzen and J. P. Crutchfield
- Abstract summary: Inferring models, predicting the future, and estimating the entropy rate of discrete-time, discrete-event processes is well-worn ground.
Here, we provide new methods for inferring, predicting, and estimating them.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inferring models, predicting the future, and estimating the entropy rate of
discrete-time, discrete-event processes is well-worn ground. However, a much
broader class of discrete-event processes operates in continuous-time. Here, we
provide new methods for inferring, predicting, and estimating them. The methods
rely on an extension of Bayesian structural inference that takes advantage of
neural network's universal approximation power. Based on experiments with
complex synthetic data, the methods are competitive with the state-of-the-art
for prediction and entropy-rate estimation.
Related papers
- Inferring biological processes with intrinsic noise from cross-sectional data [0.8192907805418583]
Inferring dynamical models from data continues to be a significant challenge in computational biology.
We show that probability flow inference (PFI) disentangles force from intrinsicity while retaining the algorithmic ease of ODE inference.
In practical applications, we show that PFI enables accurate parameter and force estimation in high-dimensional reaction networks, and that it allows inference of cell differentiation dynamics with molecular noise.
arXiv Detail & Related papers (2024-10-10T00:33:25Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Entropic Matching for Expectation Propagation of Markov Jump Processes [38.60042579423602]
We propose a new tractable inference scheme based on an entropic matching framework.
We demonstrate the effectiveness of our method by providing closed-form results for a simple family of approximate distributions.
We derive expressions for point estimation of the underlying parameters using an approximate expectation procedure.
arXiv Detail & Related papers (2023-09-27T12:07:21Z) - Adversarial robustness of amortized Bayesian inference [3.308743964406687]
Amortized Bayesian inference is to initially invest computational cost in training an inference network on simulated data.
We show that almost unrecognizable, targeted perturbations of the observations can lead to drastic changes in the predicted posterior and highly unrealistic posterior predictive samples.
We propose a computationally efficient regularization scheme based on penalizing the Fisher information of the conditional density estimator.
arXiv Detail & Related papers (2023-05-24T10:18:45Z) - Event Temporal Relation Extraction with Bayesian Translational Model [32.78633780463432]
We introduce Bayesian-Trans, a learning-based method that models the temporal relation representations as latent variables.
Compared to conventional neural approaches, the proposed model infers the parameters' posterior distribution directly.
arXiv Detail & Related papers (2023-02-10T00:11:19Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Causal Modeling with Stochastic Confounders [11.881081802491183]
This work extends causal inference with confounders.
We propose a new approach to variational estimation for causal inference based on a representer theorem with a random input space.
arXiv Detail & Related papers (2020-04-24T00:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.