Relational Conformal Prediction for Correlated Time Series
- URL: http://arxiv.org/abs/2502.09443v1
- Date: Thu, 13 Feb 2025 16:12:17 GMT
- Title: Relational Conformal Prediction for Correlated Time Series
- Authors: Andrea Cini, Alexander Jenkins, Danilo Mandic, Cesare Alippi, Filippo Maria Bianchi,
- Abstract summary: We propose a novel distribution-free approach based on conformal prediction framework and quantile regression.
We fill this void by introducing a novel conformal prediction method based on graph deep learning operators.
Our approach provides accurate coverage and archives state-of-the-art uncertainty quantification in relevant benchmarks.
- Score: 56.59852921638328
- License:
- Abstract: We address the problem of uncertainty quantification in time series forecasting by exploiting observations at correlated sequences. Relational deep learning methods leveraging graph representations are among the most effective tools for obtaining point estimates from spatiotemporal data and correlated time series. However, the problem of exploiting relational structures to estimate the uncertainty of such predictions has been largely overlooked in the same context. To this end, we propose a novel distribution-free approach based on the conformal prediction framework and quantile regression. Despite the recent applications of conformal prediction to sequential data, existing methods operate independently on each target time series and do not account for relationships among them when constructing the prediction interval. We fill this void by introducing a novel conformal prediction method based on graph deep learning operators. Our method, named Conformal Relational Prediction (CoRel), does not require the relational structure (graph) to be known as a prior and can be applied on top of any pre-trained time series predictor. Additionally, CoRel includes an adaptive component to handle non-exchangeable data and changes in the input time series. Our approach provides accurate coverage and archives state-of-the-art uncertainty quantification in relevant benchmarks.
Related papers
- Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
We introduce STOIC, that leverages correlations between time-series to learn underlying structure between time-series and to provide well-calibrated and accurate forecasts.
Over a wide-range of benchmark datasets STOIC provides 16% more accurate and better-calibrated forecasts.
arXiv Detail & Related papers (2024-07-02T20:14:32Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Sequential Predictive Conformal Inference for Time Series [16.38369532102931]
We present a new distribution-free conformal prediction algorithm for sequential data (e.g., time series)
We specifically account for the nature that time series data are non-exchangeable, and thus many existing conformal prediction algorithms are not applicable.
arXiv Detail & Related papers (2022-12-07T05:07:27Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi-output conformalized quantile regression (AEnbMIMOCQR)
It enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate in a distribution-free manner.
Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable.
arXiv Detail & Related papers (2022-07-28T16:40:26Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Conformal prediction set for time-series [16.38369532102931]
Uncertainty quantification is essential to studying complex machine learning methods.
We develop Ensemble Regularized Adaptive Prediction Set (ERAPS) to construct prediction sets for time-series.
We show valid marginal and conditional coverage by ERAPS, which also tends to yield smaller prediction sets than competing methods.
arXiv Detail & Related papers (2022-06-15T23:48:53Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Applying Regression Conformal Prediction with Nearest Neighbors to time
series data [0.0]
This paper presents a way of constructingreliable prediction intervals by using conformal predictors in the context of time series data.
We use the nearest neighbors method based on the fast parameters tuning technique in the nearest neighbors (FPTO-WNN) approach as the underlying algorithm.
arXiv Detail & Related papers (2021-10-25T15:11:32Z) - Conformal prediction for time series [16.38369532102931]
textttEnbPI wraps around ensemble predictors, which is closely related to conformal prediction (CP) but does not require data exchangeability.
We perform extensive simulation and real-data analyses to demonstrate its effectiveness compared with existing methods.
arXiv Detail & Related papers (2020-10-18T21:05:32Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.