論文の概要: Multi-Task Network for Noise-Robust Keyword Spotting and Speaker
Verification using CTC-based Soft VAD and Global Query Attention
- arxiv url: http://arxiv.org/abs/2005.03867v4
- Date: Fri, 7 Aug 2020 07:23:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 12:09:12.158490
- Title: Multi-Task Network for Noise-Robust Keyword Spotting and Speaker
Verification using CTC-based Soft VAD and Global Query Attention
- Title(参考訳): ctcベースソフトvadとグローバルクエリアテンションを用いたノイズロバストキーワードスポッティングと話者照合のためのマルチタスクネットワーク
- Authors: Myunghun Jung, Youngmoon Jung, Jahyun Goo, and Hoirin Kim
- Abstract要約: キーワードスポッティング(KWS)と話者検証(SV)は独立に研究されているが、音響領域と話者領域は相補的である。
KWS と SV を同時に行うマルチタスクネットワークを提案する。
- 参考スコア(独自算出の注目度): 13.883985850789443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Keyword spotting (KWS) and speaker verification (SV) have been studied
independently although it is known that acoustic and speaker domains are
complementary. In this paper, we propose a multi-task network that performs KWS
and SV simultaneously to fully utilize the interrelated domain information. The
multi-task network tightly combines sub-networks aiming at performance
improvement in challenging conditions such as noisy environments,
open-vocabulary KWS, and short-duration SV, by introducing novel techniques of
connectionist temporal classification (CTC)-based soft voice activity detection
(VAD) and global query attention. Frame-level acoustic and speaker information
is integrated with phonetically originated weights so that forms a word-level
global representation. Then it is used for the aggregation of feature vectors
to generate discriminative embeddings. Our proposed approach shows 4.06% and
26.71% relative improvements in equal error rate (EER) compared to the
baselines for both tasks. We also present a visualization example and results
of ablation experiments.
- Abstract(参考訳): キーワードスポッティング(KWS)と話者検証(SV)は独立に研究されているが、音響領域と話者領域は相補的であることが知られている。
本稿では、kwsとsvを同時に実行し、相互関連ドメイン情報を完全に活用するマルチタスクネットワークを提案する。
マルチタスクネットワークは、接続性時間分類(CTC)に基づくソフト音声活動検出(VAD)とグローバルクエリアテンションの導入により、ノイズ環境、オープンボキャブラリKWS、ショートデュレーションSVなどの課題条件におけるパフォーマンス改善を目的としたサブネットワークを密結合する。
フレームレベルの音響および話者情報は音素的に起源を持つ重みと統合され、単語レベルのグローバル表現を形成する。
次に、特徴ベクトルの集約に使われ、識別的埋め込みを生成する。
提案手法では,両タスクのベースラインと比較して,等誤差率(EER)が4.06%,26.71%向上した。
また、アブレーション実験の可視化例と結果を示す。
関連論文リスト
- QDFormer: Towards Robust Audiovisual Segmentation in Complex Environments with Quantization-based Semantic Decomposition [47.103732403296654]
マルチソース意味空間は、単一ソース部分空間のカルテシアン積として表すことができる。
安定なグローバルな(クリップレベルの)特徴から,局所的な(フレームレベルの)特徴に知識を蒸留する,グローバルから局所的な量子化機構を導入する。
意味的に分解された音声表現がAVSの性能を大幅に向上させることを示す実験を行った。
論文 参考訳(メタデータ) (2023-09-29T20:48:44Z) - Representation Learning With Hidden Unit Clustering For Low Resource
Speech Applications [37.89857769906568]
本稿では,隠れ単位クラスタリング(HUC)フレームワークを用いた生音声からの自己教師付き表現学習のアプローチについて述べる。
モデルへの入力は、ウィンドウ化され、1次元畳み込み層で処理されるオーディオサンプルで構成されている。
HUCフレームワークは、表現を少数の音素のような単位に分類することができ、意味的に豊かな表現を学ぶためのモデルを訓練するために使用される。
論文 参考訳(メタデータ) (2023-07-14T13:02:10Z) - Cross-Modal Global Interaction and Local Alignment for Audio-Visual
Speech Recognition [21.477900473255264]
音声・視覚音声認識(AVSR)のための多言語間相互作用と局所アライメント(GILA)アプローチを提案する。
具体的には、A-Vの相補関係をモダリティレベルで捉えるためのグローバル相互作用モデルと、フレームレベルでのA-Vの時間的一貫性をモデル化するための局所アライメントアプローチを設計する。
我々のGILAは、公開ベンチマークのLSS3とLSS2で教師付き学習状況よりも優れています。
論文 参考訳(メタデータ) (2023-05-16T06:41:25Z) - Learning Decoupling Features Through Orthogonality Regularization [55.79910376189138]
音声認識におけるキースポッティング(KWS)と話者検証(SV)は2つの重要なタスクである。
我々は,同じネットワーク構造を持つ2分岐のディープネットワーク(KWSブランチとSVブランチ)を開発する。
KWS と SV のパフォーマンスを同時に向上させるために,新しいデカップリング特徴学習法を提案する。
論文 参考訳(メタデータ) (2022-03-31T03:18:13Z) - End-to-End Active Speaker Detection [58.7097258722291]
本稿では,特徴学習と文脈予測を共同で学習するエンド・ツー・エンドのトレーニングネットワークを提案する。
また、時間間グラフニューラルネットワーク(iGNN)ブロックを導入し、ASD問題における主要なコンテキストのソースに応じてメッセージパッシングを分割する。
実験により、iGNNブロックからの集約された特徴はASDにより適しており、その結果、最先端のアートパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2022-03-27T08:55:28Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
重なり合う音声のダイアリゼーションを単一ラベル予測問題として再構成する。
話者埋め込み認識型ニューラルダイアリゼーション(SEND)システムを提案する。
論文 参考訳(メタデータ) (2022-03-18T06:40:39Z) - A Unified Deep Learning Framework for Short-Duration Speaker
Verification in Adverse Environments [16.91453126121351]
話者検証(SV)システムは、特に雑音や残響環境において、短い音声セグメントに対して堅牢であるべきである。
これら2つの要件を満たすため、機能ピラミッドモジュール(FPM)ベースのマルチスケールアグリゲーション(MSA)と自己適応型ソフトVAD(SAS-VAD)を導入する。
SV、VAD、SEモデルを統合されたディープラーニングフレームワークで組み合わせ、エンドツーエンドでネットワーク全体を共同でトレーニングします。
論文 参考訳(メタデータ) (2020-10-06T04:51:45Z) - Cross-domain Adaptation with Discrepancy Minimization for
Text-independent Forensic Speaker Verification [61.54074498090374]
本研究では,複数の音響環境下で収集したCRSS-Forensicsオーディオデータセットを紹介する。
我々は、VoxCelebデータを用いてCNNベースのネットワークを事前訓練し、次に、CRSS-Forensicsのクリーンな音声で高レベルのネットワーク層の一部を微調整するアプローチを示す。
論文 参考訳(メタデータ) (2020-09-05T02:54:33Z) - Target-Speaker Voice Activity Detection: a Novel Approach for
Multi-Speaker Diarization in a Dinner Party Scenario [51.50631198081903]
本稿では,TS-VAD(Target-Speaker Voice Activity Detection)手法を提案する。
TS-VADは各時間フレーム上の各話者の活動を直接予測する。
CHiME-6での実験では、TS-VADが最先端の結果を得ることが示された。
論文 参考訳(メタデータ) (2020-05-14T21:24:56Z) - Deep Speaker Embeddings for Far-Field Speaker Recognition on Short
Utterances [53.063441357826484]
深層話者埋め込みに基づく話者認識システムは,制御条件下での大幅な性能向上を実現している。
制御されていない雑音環境下での短い発話に対する話者検証は、最も困難で要求の高いタスクの1つである。
本稿では,a)環境騒音の有無による遠距離話者検証システムの品質向上,b)短時間発話におけるシステム品質劣化の低減という2つの目標を達成するためのアプローチを提案する。
論文 参考訳(メタデータ) (2020-02-14T13:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。