Lightwave Power Transfer for Federated Learning-based Wireless Networks
- URL: http://arxiv.org/abs/2005.03977v1
- Date: Sat, 11 Apr 2020 16:27:17 GMT
- Title: Lightwave Power Transfer for Federated Learning-based Wireless Networks
- Authors: Ha-Vu Tran, Georges Kaddoum, Hany Elgala, Chadi Abou-Rjeily and Hemani
Kaushal
- Abstract summary: Federated Learning (FL) has been recently presented as a new technique for training shared machine learning models in a distributed manner.
implementing FL in wireless networks may significantly reduce the lifetime of energy-constrained mobile devices.
We propose a novel approach at the physical layer based on the application of lightwave power transfer in the FL-based wireless network.
- Score: 34.434349833489954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has been recently presented as a new technique for
training shared machine learning models in a distributed manner while
respecting data privacy. However, implementing FL in wireless networks may
significantly reduce the lifetime of energy-constrained mobile devices due to
their involvement in the construction of the shared learning models. To handle
this issue, we propose a novel approach at the physical layer based on the
application of lightwave power transfer in the FL-based wireless network and a
resource allocation scheme to manage the network's power efficiency. Hence, we
formulate the corresponding optimization problem and then propose a method to
obtain the optimal solution. Numerical results reveal that, the proposed scheme
can provide sufficient energy to a mobile device for performing FL tasks
without using any power from its own battery. Hence, the proposed approach can
support the FL-based wireless network to overcome the issue of limited energy
in mobile devices.
Related papers
- Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
Foundation models (FMs) are general-purpose artificial intelligence (AI) models that have recently enabled multiple brand-new generative AI applications.
Currently, the exploration of the interplay between FMs and federated learning (FL) is still in its nascent stage.
This article explores the extent to which FMs are suitable for FL over wireless networks, including a broad overview of research challenges and opportunities.
arXiv Detail & Related papers (2023-10-06T04:13:10Z) - Wirelessly Powered Federated Learning Networks: Joint Power Transfer,
Data Sensing, Model Training, and Resource Allocation [24.077525032187893]
Federated learning (FL) has found many successes in wireless networks.
implementation of FL has been hindered by the energy limitation of mobile devices (MDs) and the availability of training data at MDs.
How to integrate wireless power transfer and sustainable sustainable FL networks.
arXiv Detail & Related papers (2023-08-09T13:38:58Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
Federated Learning (FL) has emerged as a decentralized technique, where contrary to traditional centralized approaches, devices perform a model training in a collaborative manner.
Despite the existing efforts made in FL, its environmental impact is still under investigation, since several critical challenges regarding its applicability to wireless networks have been identified.
The current work proposes a Genetic Algorithm (GA) approach, targeting the minimization of both the overall energy consumption of an FL process and any unnecessary resource utilization.
arXiv Detail & Related papers (2023-06-25T13:10:38Z) - Energy and Spectrum Efficient Federated Learning via High-Precision
Over-the-Air Computation [26.499025986273832]
Federated learning (FL) enables mobile devices to collaboratively learn a shared prediction model while keeping data locally.
There are two major research challenges to practically deploy FL over mobile devices.
We propose a novel multi-bit over-the-air computation (M-AirComp) approach for spectrum-efficient aggregation of local model updates in FL.
arXiv Detail & Related papers (2022-08-15T14:47:21Z) - Power Allocation for Wireless Federated Learning using Graph Neural
Networks [28.735019205296776]
We propose a data-driven approach for power allocation in the context of federated learning (FL) over interference-limited wireless networks.
The power policy is designed to maximize the transmitted information during the FL process under communication constraints.
arXiv Detail & Related papers (2021-11-15T00:54:52Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
federated learning (FL) over massive mobile edge devices opens new horizons for numerous intelligent mobile applications.
FL imposes huge communication and computation burdens on participating devices due to periodical global synchronization and continuous local training.
We develop a convergence-guaranteed FL algorithm enabling flexible communication compression.
arXiv Detail & Related papers (2020-12-22T02:54:18Z) - To Talk or to Work: Energy Efficient Federated Learning over Mobile
Devices via the Weight Quantization and 5G Transmission Co-Design [49.95746344960136]
Federated learning (FL) is a new paradigm for large-scale learning tasks across mobile devices.
It is not clear how to establish an effective wireless network architecture to support FL over mobile devices.
We develop a wireless transmission and weight quantization co-design for energy efficient FL over heterogeneous 5G mobile devices.
arXiv Detail & Related papers (2020-12-21T01:13:44Z) - Communication Efficient Federated Learning with Energy Awareness over
Wireless Networks [51.645564534597625]
In federated learning (FL), the parameter server and the mobile devices share the training parameters over wireless links.
We adopt the idea of SignSGD in which only the signs of the gradients are exchanged.
Two optimization problems are formulated and solved, which optimize the learning performance.
Considering that the data may be distributed across the mobile devices in a highly uneven fashion in FL, a sign-based algorithm is proposed.
arXiv Detail & Related papers (2020-04-15T21:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.