Improved Upper Bounds for the Hitting Times of Quantum Walks
- URL: http://arxiv.org/abs/2005.04062v5
- Date: Tue, 12 Oct 2021 02:48:41 GMT
- Title: Improved Upper Bounds for the Hitting Times of Quantum Walks
- Authors: Yosi Atia and Shantanav Chakraborty
- Abstract summary: Continuous-time quantum walks have proven to be an extremely useful framework for the design of quantum algorithms.
We provide improved upper bounds for the quantum hitting time that can be applied to several CTQW-based quantum algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous-time quantum walks have proven to be an extremely useful framework
for the design of several quantum algorithms. Often, the running time of
quantum algorithms in this framework is characterized by the quantum hitting
time: the time required by the quantum walk to find a vertex of interest with a
high probability. In this article, we provide improved upper bounds for the
quantum hitting time that can be applied to several CTQW-based quantum
algorithms. In particular, we apply our techniques to the glued-trees problem,
improving their hitting time upper bound by a polynomial factor: from $O(n^5)$
to $O(n^2\log n)$. Furthermore, our methods also help to exponentially improve
the dependence on precision of the continuous-time quantum walk based algorithm
to find a marked node on any ergodic, reversible Markov chain by Chakraborty et
al. [PRA 102, 022227 (2020)].
Related papers
- Towards Entropic Constraints on Quantum Speedups [0.0]
Some quantum algorithms have "quantum speedups": improved time complexity as compared with the best-known classical algorithms for solving the same tasks.
Can we understand what fuels these speedups from an entropic perspective?
Information theory gives us a multitude of metrics we might choose from to measure how fundamentally 'quantum' is the behavior of a quantum computer running an algorithm.
arXiv Detail & Related papers (2024-11-05T19:00:04Z) - Robust Implementation of Discrete-time Quantum Walks in Any Finite-dimensional Quantum System [2.646968944595457]
discrete-time quantum walk (DTQW) model one of most suitable choices for circuit implementation.
In this paper, we have successfully cut down the circuit cost concerning gate count and circuit depth by half.
For the engineering excellence of our proposed approach, we implement DTQW in any finite-dimensional quantum system with akin efficiency.
arXiv Detail & Related papers (2024-08-01T13:07:13Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Variational Quantum Circuits for Multi-Qubit Gate Automata [0.6445605125467573]
Variational quantum algorithms (VQAs) may have the capacity to provide a quantum advantage in the Noisy Intermediate-scale Quantum (NISQ) era.
We present a quantum machine learning framework, inspired by VQAs, to tackle the problem of finding time-independent Hamiltonians that generate desired unitary evolutions.
arXiv Detail & Related papers (2022-08-31T22:05:17Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Dequantizing the Quantum Singular Value Transformation: Hardness and
Applications to Quantum Chemistry and the Quantum PCP Conjecture [0.0]
We show that the Quantum Singular Value Transformation can be efficiently "dequantized"
We show that with inverse-polynomial precision, the same problem becomes BQP-complete.
We also discuss how this dequantization technique may help make progress on the central quantum PCP.
arXiv Detail & Related papers (2021-11-17T12:50:13Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Prospects for Quantum Enhancement with Diabatic Quantum Annealing [0.0]
We assess the prospects for algorithms within the general framework of quantum annealing (QA) to achieve a quantum speedup.
We argue for continued exploration and interest in the QA framework on the basis that improved coherence times and control capabilities will enable the near-term exploration of several quantum optimization algorithms.
We argue that all of these protocols can be explored in a state-of-the-art manner by embracing the full range of novel out-of-equilibrium quantum dynamics generated by time-dependent effective transverse-field Ising Hamiltonians.
arXiv Detail & Related papers (2020-08-22T21:25:51Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.