Robust Implementation of Discrete-time Quantum Walks in Any Finite-dimensional Quantum System
- URL: http://arxiv.org/abs/2408.00530v2
- Date: Sat, 3 Aug 2024 08:08:47 GMT
- Title: Robust Implementation of Discrete-time Quantum Walks in Any Finite-dimensional Quantum System
- Authors: Biswayan Nandi, Sandipan Singha, Ankan Datta, Amit Saha, Amlan Chakrabarti,
- Abstract summary: discrete-time quantum walk (DTQW) model one of most suitable choices for circuit implementation.
In this paper, we have successfully cut down the circuit cost concerning gate count and circuit depth by half.
For the engineering excellence of our proposed approach, we implement DTQW in any finite-dimensional quantum system with akin efficiency.
- Score: 2.646968944595457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research has shown that quantum walks can accelerate certain quantum algorithms and act as a universal paradigm for quantum processing. The discrete-time quantum walk (DTQW) model, owing to its discrete nature, stands out as one of the most suitable choices for circuit implementation. Nevertheless, most current implementations are characterized by extensive, multi-layered quantum circuits, leading to higher computational expenses and a notable decrease in the number of confidently executable time steps on current quantum computers. Since quantum computers are not scalable enough in this NISQ era, we also must confine ourselves to the ancilla-free frontier zone. Therefore, in this paper, we have successfully cut down the circuit cost concerning gate count and circuit depth by half through our proposed methodology in qubit systems as compared to the state-of-the-art increment-decrement approach. Furthermore, for the engineering excellence of our proposed approach, we implement DTQW in any finite-dimensional quantum system with akin efficiency. To ensure an efficient implementation of quantum walks without requiring ancilla, we have incorporated an intermediate qudit technique for decomposing multi-qubit gates. Experimental outcomes hold significance far beyond the realm of just a few time steps, laying the groundwork for dependable implementation and utilization on quantum computers.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Assisted quantum simulation of open quantum systems [0.0]
We introduce the quantum-assisted quantum algorithm, which reduces the circuit depth of UQA via NISQ technology.
We present two quantum-assisted quantum algorithms for simulating open quantum systems.
arXiv Detail & Related papers (2023-02-26T11:41:02Z) - Fast quantum state transfer and entanglement for cavity-coupled many
qubits via dark pathways [1.8352113484137624]
Quantum state transfer (QST) and entangled state generation (ESG) are important building blocks for modern quantum information processing.
We propose a general method to realize high-fidelity fast QST and ESG in a cavity-coupled many qubits system via its dark pathways.
arXiv Detail & Related papers (2022-01-18T08:29:35Z) - Noncyclic nonadiabatic holonomic quantum gates via shortcuts to
adiabaticity [5.666193021459319]
We propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum systems via shortcuts to adiabaticity.
Our scheme is readily realizable in physical system currently pursued for implementation of quantum computation.
arXiv Detail & Related papers (2021-05-28T15:23:24Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Exploiting dynamic quantum circuits in a quantum algorithm with
superconducting qubits [0.207811670193148]
We build dynamic quantum circuits on a superconducting-based quantum system.
We exploit one of the most fundamental quantum algorithms, quantum phase estimation, in its adaptive version.
We demonstrate that the version of real-time quantum computing with dynamic circuits can offer a substantial and tangible advantage.
arXiv Detail & Related papers (2021-02-02T18:51:23Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.