Delay-aware Resource Allocation in Fog-assisted IoT Networks Through
Reinforcement Learning
- URL: http://arxiv.org/abs/2005.04097v2
- Date: Fri, 10 Jul 2020 19:45:24 GMT
- Title: Delay-aware Resource Allocation in Fog-assisted IoT Networks Through
Reinforcement Learning
- Authors: Qiang Fan, Jianan Bai, Hongxia Zhang, Yang Yi, Lingjia Liu
- Abstract summary: Fog nodes in the vicinity of IoT devices are promising to provision low latency services by offloading tasks from IoT devices to them.
We investigate the resource allocation problem to minimize the delay of all tasks while their constraints are satisfied.
We design an on-line reinforcement learning algorithm to make the sub-optimal decision in real time based on the system's experience replay data.
- Score: 22.624703832795355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fog nodes in the vicinity of IoT devices are promising to provision low
latency services by offloading tasks from IoT devices to them. Mobile IoT is
composed by mobile IoT devices such as vehicles, wearable devices and
smartphones. Owing to the time-varying channel conditions, traffic loads and
computing loads, it is challenging to improve the quality of service (QoS) of
mobile IoT devices. As task delay consists of both the transmission delay and
computing delay, we investigate the resource allocation (i.e., including both
radio resource and computation resource) in both the wireless channel and fog
node to minimize the delay of all tasks while their QoS constraints are
satisfied. We formulate the resource allocation problem into an integer
non-linear problem, where both the radio resource and computation resource are
taken into account. As IoT tasks are dynamic, the resource allocation for
different tasks are coupled with each other and the future information is
impractical to be obtained. Therefore, we design an on-line reinforcement
learning algorithm to make the sub-optimal decision in real time based on the
system's experience replay data. The performance of the designed algorithm has
been demonstrated by extensive simulation results.
Related papers
- Resource Efficient Asynchronous Federated Learning for Digital Twin Empowered IoT Network [29.895766751146155]
Digital twin (DT) can provide real-time status and dynamic topology mapping for Internet of Things (IoT) devices.
We develop a dynamic resource scheduling algorithm tailored for the asynchronous federated learning (FL)-based lightweight DT empowered IoT network.
Specifically, our approach aims to minimize a multi-objective function that encompasses both energy consumption and latency.
arXiv Detail & Related papers (2024-08-26T14:28:51Z) - Structural Knowledge-Driven Meta-Learning for Task Offloading in
Vehicular Networks with Integrated Communications, Sensing and Computing [21.50450449083369]
Task offloading is a potential solution to satisfy the strict requirements of latencysensitive vehicular applications due to the limited onboard computing resources.
We propose a creative structural knowledge-driven meta-learning (SKDML) method, involving both the model-based AM algorithm and neural networks.
arXiv Detail & Related papers (2024-02-25T03:31:59Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Computation Offloading and Resource Allocation in F-RANs: A Federated
Deep Reinforcement Learning Approach [67.06539298956854]
fog radio access network (F-RAN) is a promising technology in which the user mobile devices (MDs) can offload computation tasks to the nearby fog access points (F-APs)
arXiv Detail & Related papers (2022-06-13T02:19:20Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Federated Double Deep Q-learning for Joint Delay and Energy Minimization
in IoT networks [12.599009485247283]
We propose a federated deep reinforcement learning framework to solve a multi-objective optimization problem.
To enhance the learning speed of IoT devices (agents), we incorporate federated learning (FDL) at the end of each episode.
Our numerical results demonstrate the efficacy of our proposed federated DDQN framework in terms of learning speed.
arXiv Detail & Related papers (2021-04-02T18:41:59Z) - Split Computing and Early Exiting for Deep Learning Applications: Survey
and Research Challenges [18.103754866476088]
We provide a comprehensive survey of the state of the art in split computing (SC) and early exiting (EE) strategies.
Recent approaches have been proposed, where the deep neural network is split into a head and a tail model, executed respectively on the mobile device and on the edge device.
EE trains models to present multiple "exits" earlier in the architecture, each providing increasingly higher target accuracy.
arXiv Detail & Related papers (2021-03-08T01:47:20Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in
Space-Air-Ground Integrated Network [24.022108191145527]
We investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services.
In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions.
Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint.
arXiv Detail & Related papers (2020-10-04T02:58:03Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.