Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in
Space-Air-Ground Integrated Network
- URL: http://arxiv.org/abs/2010.01471v1
- Date: Sun, 4 Oct 2020 02:58:03 GMT
- Title: Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in
Space-Air-Ground Integrated Network
- Authors: Conghao Zhou, Wen Wu, Hongli He, Peng Yang, Feng Lyu, Nan Cheng, and
Xuemin (Sherman) Shen
- Abstract summary: We investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services.
In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions.
Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint.
- Score: 24.022108191145527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate a computing task scheduling problem in
space-air-ground integrated network (SAGIN) for delay-oriented Internet of
Things (IoT) services. In the considered scenario, an unmanned aerial vehicle
(UAV) collects computing tasks from IoT devices and then makes online
offloading decisions, in which the tasks can be processed at the UAV or
offloaded to the nearby base station or the remote satellite. Our objective is
to design a task scheduling policy that minimizes offloading and computing
delay of all tasks given the UAV energy capacity constraint. To this end, we
first formulate the online scheduling problem as an energy-constrained Markov
decision process (MDP). Then, considering the task arrival dynamics, we develop
a novel deep risk-sensitive reinforcement learning algorithm. Specifically, the
algorithm evaluates the risk, which measures the energy consumption that
exceeds the constraint, for each state and searches the optimal parameter
weighing the minimization of delay and risk while learning the optimal policy.
Extensive simulation results demonstrate that the proposed algorithm can reduce
the task processing delay by up to 30% compared to probabilistic configuration
methods while satisfying the UAV energy capacity constraint.
Related papers
- Computation Pre-Offloading for MEC-Enabled Vehicular Networks via Trajectory Prediction [38.493882483362135]
We present a Trajectory Prediction-based Pre-offloading Decision (TPPD) algorithm for analyzing the historical trajectories of vehicles.
We devise a dynamic resource allocation algorithm using a Double Deep Q-Network (DDQN) that enables the edge server to minimize task processing delay.
arXiv Detail & Related papers (2024-09-26T09:46:43Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Structural Knowledge-Driven Meta-Learning for Task Offloading in
Vehicular Networks with Integrated Communications, Sensing and Computing [21.50450449083369]
Task offloading is a potential solution to satisfy the strict requirements of latencysensitive vehicular applications due to the limited onboard computing resources.
We propose a creative structural knowledge-driven meta-learning (SKDML) method, involving both the model-based AM algorithm and neural networks.
arXiv Detail & Related papers (2024-02-25T03:31:59Z) - Security-Sensitive Task Offloading in Integrated Satellite-Terrestrial Networks [15.916368067018169]
We propose the deployment of LEO satellite edge in an integrated satellite-terrestrial networks (ISTN) structure to support textitsecurity-sensitive computing task offloading.
We model the task allocation and offloading order problem as a joint optimization problem to minimize task offloading delay, energy consumption, and the number of attacks while satisfying reliability constraints.
arXiv Detail & Related papers (2024-01-20T07:29:55Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - A Fast Task Offloading Optimization Framework for IRS-Assisted
Multi-Access Edge Computing System [14.82292289994152]
We propose a deep learning-based optimization framework called Iterative Order-Preserving policy Optimization (IOPO)
IOPO enables the generation of energy-efficient task-offloading decisions within milliseconds.
Experimental results demonstrate that the proposed framework can generate energy-efficient task-offloading decisions within a very short time period.
arXiv Detail & Related papers (2023-07-17T13:32:02Z) - Differentially Private Deep Q-Learning for Pattern Privacy Preservation
in MEC Offloading [76.0572817182483]
attackers may eavesdrop on the offloading decisions to infer the edge server's (ES's) queue information and users' usage patterns.
We propose an offloading strategy which jointly minimizes the latency, ES's energy consumption, and task dropping rate, while preserving pattern privacy (PP)
We develop a Differential Privacy Deep Q-learning based Offloading (DP-DQO) algorithm to solve this problem while addressing the PP issue by injecting noise into the generated offloading decisions.
arXiv Detail & Related papers (2023-02-09T12:50:18Z) - Computation Offloading and Resource Allocation in F-RANs: A Federated
Deep Reinforcement Learning Approach [67.06539298956854]
fog radio access network (F-RAN) is a promising technology in which the user mobile devices (MDs) can offload computation tasks to the nearby fog access points (F-APs)
arXiv Detail & Related papers (2022-06-13T02:19:20Z) - Energy Minimization in UAV-Aided Networks: Actor-Critic Learning for
Constrained Scheduling Optimization [30.742052801257998]
In unmanned aerial vehicle (UAV) applications, the UAV's limited energy supply and storage have triggered the development of intelligent energy-conserving solutions.
In this paper, we investigate energy-DSOS solution jointly optimizing data-transmission scheduling hovering time.
arXiv Detail & Related papers (2020-06-24T10:44:28Z) - Federated Learning for Task and Resource Allocation in Wireless High
Altitude Balloon Networks [160.96150373385768]
The problem of minimizing energy and time consumption for task computation and transmission is studied in a mobile edge computing (MEC)-enabled balloon network.
A support vector machine (SVM)-based federated learning (FL) algorithm is proposed to determine the user association proactively.
The proposed SVM-based FL method enables each HAB to cooperatively build an SVM model that can determine all user associations.
arXiv Detail & Related papers (2020-03-19T14:18:25Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.