論文の概要: Progressive Adversarial Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2005.04311v1
- Date: Fri, 8 May 2020 22:48:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 13:10:29.022390
- Title: Progressive Adversarial Semantic Segmentation
- Title(参考訳): プログレッシブ・adversarial semantic segmentation
- Authors: Abdullah-Al-Zubaer Imran and Demetri Terzopoulos
- Abstract要約: 深い畳み込みニューラルネットワークは、完全な監視が与えられた場合、非常によく機能する。
画像解析タスクのための完全教師付きモデルの成功は、大量のラベル付きデータの入手に限られる。
本稿では,新しい医用画像分割モデル,Progressive Adrial Semantic(PASS)を提案する。
- 参考スコア(独自算出の注目度): 11.323677925193438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image computing has advanced rapidly with the advent of deep learning
techniques such as convolutional neural networks. Deep convolutional neural
networks can perform exceedingly well given full supervision. However, the
success of such fully-supervised models for various image analysis tasks (e.g.,
anatomy or lesion segmentation from medical images) is limited to the
availability of massive amounts of labeled data. Given small sample sizes, such
models are prohibitively data biased with large domain shift. To tackle this
problem, we propose a novel end-to-end medical image segmentation model, namely
Progressive Adversarial Semantic Segmentation (PASS), which can make improved
segmentation predictions without requiring any domain-specific data during
training time. Our extensive experimentation with 8 public diabetic retinopathy
and chest X-ray datasets, confirms the effectiveness of PASS for accurate
vascular and pulmonary segmentation, both for in-domain and cross-domain
evaluations.
- Abstract(参考訳): 畳み込みニューラルネットワークのような深層学習技術が出現し、医療画像コンピューティングは急速に進歩した。
深い畳み込みニューラルネットワークは、完全な監視によって非常によく実行される。
しかし、様々な画像解析タスク(例えば、医学画像からの解剖学や病変のセグメンテーション)のための完全な教師付きモデルの成功は、大量のラベル付きデータの入手に限られている。
サンプルサイズが小さいと、そのようなモデルは大きなドメインシフトに偏っている。
そこで本研究では,訓練中にドメイン固有のデータを必要とせずに,セグメント化予測を改良できる新しい医用画像セグメンテーションモデルであるprogressive adversarial semantic segmentation (pass)を提案する。
8つのパブリック糖尿病網膜症と胸部X線データセットを用いた広範囲な実験により,PASSの血管および肺の正確な分画に対する効果が確認された。
関連論文リスト
- Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
実世界のシナリオでは、トレーニング中に露出していない新しいドメインや異なるドメインのデータに遭遇することが一般的である。
ドメイン一般化(Domain Generalization, DG)は、モデルがこれまで見つからなかったドメインからのデータを扱うことを可能にする、有望な方向である。
本稿では,敵対的トレーニングを活用して無限のスタイルでトレーニングデータを生成する,AdverIN(Adversarial Intensity Attack)と呼ばれる新しいDG手法を提案する。
論文 参考訳(メタデータ) (2023-04-05T19:40:51Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - AADG: Automatic Augmentation for Domain Generalization on Retinal Image
Segmentation [1.0452185327816181]
AADG(Automated Augmentation for Domain Generalization)と呼ばれるデータ操作に基づくドメイン一般化手法を提案する。
我々のAADGフレームワークは、新しいドメインを生成するデータ拡張ポリシーを効果的にサンプリングすることができる。
提案するAADGは,最先端の一般化性能を示し,既存手法より優れている。
論文 参考訳(メタデータ) (2022-07-27T02:26:01Z) - Multimodal Transfer Learning-based Approaches for Retinal Vascular
Segmentation [2.672151045393935]
網膜微小循環の研究は、高血圧や糖尿病などの多くの眼疾患および全身疾患の分析において重要な問題です。
FCNはイメージセグメンテーションにおける最も成功したアプローチである。
本研究では,網膜血管セグメンテーションに対するマルチモーダルトランスファー学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-12-18T10:38:35Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
医用画像セグメンテーションのためのニューラルネットワークのトレーニングのための逆データ拡張手法を提案する。
このモデルでは,MR画像における共通の種類のアーチファクトによって生じる強度不均一性,すなわちバイアス場をモデル化する。
このような手法により,モデルの一般化と堅牢性の向上が図られ,低データシナリオにおける大幅な改善が期待できる。
論文 参考訳(メタデータ) (2020-06-23T20:43:18Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。