Visually Impaired Aid using Convolutional Neural Networks, Transfer
Learning, and Particle Competition and Cooperation
- URL: http://arxiv.org/abs/2005.04473v1
- Date: Sat, 9 May 2020 16:11:48 GMT
- Title: Visually Impaired Aid using Convolutional Neural Networks, Transfer
Learning, and Particle Competition and Cooperation
- Authors: Fabricio Breve, Carlos Norberto Fischer
- Abstract summary: We propose the use of convolutional neural networks (CNN), transfer learning, and semi-supervised learning (SSL) to build a framework aimed at the visually impaired aid.
It has low computational costs and, therefore, may be implemented on current smartphones, without relying on any additional equipment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Navigation and mobility are some of the major problems faced by visually
impaired people in their daily lives. Advances in computer vision led to the
proposal of some navigation systems. However, most of them require expensive
and/or heavy hardware. In this paper we propose the use of convolutional neural
networks (CNN), transfer learning, and semi-supervised learning (SSL) to build
a framework aimed at the visually impaired aid. It has low computational costs
and, therefore, may be implemented on current smartphones, without relying on
any additional equipment. The smartphone camera can be used to automatically
take pictures of the path ahead. Then, they will be immediately classified,
providing almost instantaneous feedback to the user. We also propose a dataset
to train the classifiers, including indoor and outdoor situations with
different types of light, floor, and obstacles. Many different CNN
architectures are evaluated as feature extractors and classifiers, by
fine-tuning weights pre-trained on a much larger dataset. The graph-based SSL
method, known as particle competition and cooperation, is also used for
classification, allowing feedback from the user to be incorporated without
retraining the underlying network. 92\% and 80\% classification accuracy is
achieved in the proposed dataset in the best supervised and SSL scenarios,
respectively.
Related papers
- Battle of the Backbones: A Large-Scale Comparison of Pretrained Models
across Computer Vision Tasks [139.3768582233067]
Battle of the Backbones (BoB) is a benchmarking tool for neural network based computer vision systems.
We find that vision transformers (ViTs) and self-supervised learning (SSL) are increasingly popular.
In apples-to-apples comparisons on the same architectures and similarly sized pretraining datasets, we find that SSL backbones are highly competitive.
arXiv Detail & Related papers (2023-10-30T18:23:58Z) - Visual Recognition with Deep Nearest Centroids [57.35144702563746]
We devise deep nearest centroids (DNC), a conceptually elegant yet surprisingly effective network for large-scale visual recognition.
Compared with parametric counterparts, DNC performs better on image classification (CIFAR-10, ImageNet) and greatly boots pixel recognition (ADE20K, Cityscapes)
arXiv Detail & Related papers (2022-09-15T15:47:31Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Task-Oriented Image Transmission for Scene Classification in Unmanned
Aerial Systems [46.64800170644672]
We propose a new aerial image transmission paradigm for the scene classification task.
A lightweight model is developed on the front-end UAV for semantic blocks transmission with perception of images and channel conditions.
In order to achieve the tradeoff between transmission latency and classification accuracy, deep reinforcement learning is used.
arXiv Detail & Related papers (2021-12-21T02:44:49Z) - MUSCLE: Strengthening Semi-Supervised Learning Via Concurrent
Unsupervised Learning Using Mutual Information Maximization [29.368950377171995]
We introduce Mutual-information-based Unsupervised & Semi-supervised Concurrent LEarning (MUSCLE) to combine both unsupervised and semi-supervised learning.
MUSCLE can be used as a stand-alone training scheme for neural networks, and can also be incorporated into other learning approaches.
We show that the proposed hybrid model outperforms state of the art on several standard benchmarks, including CIFAR-10, CIFAR-100, and Mini-Imagenet.
arXiv Detail & Related papers (2020-11-30T23:01:04Z) - Federated Self-Supervised Learning of Multi-Sensor Representations for
Embedded Intelligence [8.110949636804772]
Smartphones, wearables, and Internet of Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models.
We propose a self-supervised approach termed textitscalogram-signal correspondence learning based on wavelet transform to learn useful representations from unlabeled sensor inputs.
We extensively assess the quality of learned features with our multi-view strategy on diverse public datasets, achieving strong performance in all domains.
arXiv Detail & Related papers (2020-07-25T21:59:17Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
We establish that the complex ego-motions exhibited in handheld settings are a critical obstacle for learning depth.
We propose a data pre-processing method that rectifies training images by removing their relative rotations for effective learning.
Our results outperform the previous unsupervised SOTA method by a large margin on the challenging NYUv2 dataset.
arXiv Detail & Related papers (2020-06-04T08:59:17Z) - Light-in-the-loop: using a photonics co-processor for scalable training
of neural networks [21.153688679957337]
We present the first optical co-processor able to accelerate the training phase of digitally-implemented neural networks.
We demonstrate its use to train a neural network for handwritten digits recognition.
arXiv Detail & Related papers (2020-06-02T09:19:45Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.