Training a Distributed Acoustic Sensing Traffic Monitoring Network With Video Inputs
- URL: http://arxiv.org/abs/2412.12743v1
- Date: Tue, 17 Dec 2024 10:06:42 GMT
- Title: Training a Distributed Acoustic Sensing Traffic Monitoring Network With Video Inputs
- Authors: Khen Cohen, Liav Hen, Ariel Lellouch,
- Abstract summary: We present a novel concept that integrates DAS data with co-located visual information.
Our model achieves a performance exceeding 94% for detection and classification, and about 1.2% false alarm rate.
- Score: 0.0
- License:
- Abstract: Distributed Acoustic Sensing (DAS) has emerged as a promising tool for real-time traffic monitoring in densely populated areas. In this paper, we present a novel concept that integrates DAS data with co-located visual information. We use YOLO-derived vehicle location and classification from camera inputs as labeled data to train a detection and classification neural network utilizing DAS data only. Our model achieves a performance exceeding 94% for detection and classification, and about 1.2% false alarm rate. We illustrate the model's application in monitoring traffic over a week, yielding statistical insights that could benefit future smart city developments. Our approach highlights the potential of combining fiber-optic sensors with visual information, focusing on practicality and scalability, protecting privacy, and minimizing infrastructure costs. To encourage future research, we share our dataset.
Related papers
- Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.
A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - Self-Updating Vehicle Monitoring Framework Employing Distributed Acoustic Sensing towards Real-World Settings [5.306938463648908]
We introduce a real-time semi-supervised vehicle monitoring framework tailored to urban settings.
It requires only a small fraction of manual labels for initial training and exploits unlabeled data for model improvement.
We propose a novel prior loss that incorporates the shapes of vehicular traces to track a single vehicle with varying speeds.
arXiv Detail & Related papers (2024-09-16T13:10:58Z) - TLD-READY: Traffic Light Detection -- Relevance Estimation and Deployment Analysis [9.458657306918859]
Effective traffic light detection is a critical component of the perception stack in autonomous vehicles.
This work introduces a novel deep-learning detection system while addressing the challenges of previous work.
We propose a relevance estimation system that innovatively uses directional arrow markings on the road, eliminating the need for prior map creation.
arXiv Detail & Related papers (2024-09-11T14:12:44Z) - Comparing Optical Flow and Deep Learning to Enable Computationally Efficient Traffic Event Detection with Space-Filling Curves [0.6322312717516407]
We compare Optical Flow (OF) and Deep Learning (DL) to feed computationally efficient event detection via space-filling curves on video data from a forward-facing, in-vehicle camera.
Our results yield that the OF approach excels in specificity and reduces false positives, while the DL approach demonstrates superior sensitivity.
arXiv Detail & Related papers (2024-07-15T13:44:52Z) - ST-GIN: An Uncertainty Quantification Approach in Traffic Data
Imputation with Spatio-temporal Graph Attention and Bidirectional Recurrent
United Neural Networks [18.66289473659838]
We propose an innovative deep learning approach for imputing missing data.
A graph attention architecture is employed to capture the spatial correlations present in traffic data.
A bidirectional neural network is utilized to learn temporal information.
arXiv Detail & Related papers (2023-05-10T22:15:40Z) - A Distributed Acoustic Sensor System for Intelligent Transportation
using Deep Learning [2.1219631216034127]
This work explores a novel data source based on optical fibre-based distributed acoustic sensors (DAS) for traffic analysis.
We propose a deep learning technique to analyse DAS signals to address this challenge through continuous sensing and without exposing personal information.
We achieve 92% vehicle classification accuracy and 92%-97% in occupancy detection based on DAS data collected under controlled conditions.
arXiv Detail & Related papers (2022-09-13T13:23:30Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.