CFDNet: a deep learning-based accelerator for fluid simulations
- URL: http://arxiv.org/abs/2005.04485v1
- Date: Sat, 9 May 2020 18:06:09 GMT
- Title: CFDNet: a deep learning-based accelerator for fluid simulations
- Authors: Octavi Obiols-Sales, Abhinav Vishnu, Nicholas Malaya, Aparna
Chandramowlishwaran
- Abstract summary: CFD is used to predict engineering quantities of interest, such as the lift on a plane wing or the drag on a motor vehicle.
Many systems of interest are prohibitively expensive for design optimization, due to the expense of evaluating CFD simulations.
This paper introduces CFDNet -- a physical simulation and deep learning coupled framework.
- Score: 1.5649420473539182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: CFD is widely used in physical system design and optimization, where it is
used to predict engineering quantities of interest, such as the lift on a plane
wing or the drag on a motor vehicle. However, many systems of interest are
prohibitively expensive for design optimization, due to the expense of
evaluating CFD simulations. To render the computation tractable, reduced-order
or surrogate models are used to accelerate simulations while respecting the
convergence constraints provided by the higher-fidelity solution. This paper
introduces CFDNet -- a physical simulation and deep learning coupled framework,
for accelerating the convergence of Reynolds Averaged Navier-Stokes
simulations. CFDNet is designed to predict the primary physical properties of
the fluid including velocity, pressure, and eddy viscosity using a single
convolutional neural network at its core. We evaluate CFDNet on a variety of
use-cases, both extrapolative and interpolative, where test geometries are
observed/not-observed during training. Our results show that CFDNet meets the
convergence constraints of the domain-specific physics solver while
outperforming it by 1.9 - 7.4x on both steady laminar and turbulent flows.
Moreover, we demonstrate the generalization capacity of CFDNet by testing its
prediction on new geometries unseen during training. In this case, the approach
meets the CFD convergence criterion while still providing significant speedups
over traditional domain-only models.
Related papers
- PointSAGE: Mesh-independent superresolution approach to fluid flow predictions [0.0]
High-resolution CFD simulations offer valuable insights into fluid behavior and flow patterns.
As resolution increases, computational data requirements and time increase proportionately.
We propose PointSAGE, a mesh-independent network to learn the complex fluid flow and directly predict fine simulations.
arXiv Detail & Related papers (2024-04-06T12:49:09Z) - Differentiable Turbulence II [0.0]
We develop a framework for integrating deep learning models into a generic finite element numerical scheme for solving the Navier-Stokes equations.
We show that the learned closure can achieve accuracy comparable to traditional large eddy simulation on a finer grid that amounts to an equivalent speedup of 10x.
arXiv Detail & Related papers (2023-07-25T14:27:49Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
It aims to develop reduced-order/surrogate models for turbulent flow simulations using Machine Learning.
Different model structures are analyzed, with U-NET structures performing better than the standard FNO in accuracy and stability.
arXiv Detail & Related papers (2023-07-25T14:09:53Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - Stacked Generative Machine Learning Models for Fast Approximations of
Steady-State Navier-Stokes Equations [1.4150517264592128]
We develop a weakly-supervised approach to solve the steady-state Navier-Stokes equations under various boundary conditions.
We achieve state-of-the-art results without any labeled simulation data.
We train stacked models of increasing complexity generating the numerical solutions for N-S equations.
arXiv Detail & Related papers (2021-12-13T05:08:55Z) - Finite volume method network for acceleration of unsteady computational
fluid dynamics: non-reacting and reacting flows [0.0]
A neural network model with a unique network architecture and physics-informed loss function was developed to accelerate CFD simulations.
Under the reacting flow dataset, the computational speed of this network model was measured to be about 10 times faster than that of the CFD solver.
arXiv Detail & Related papers (2021-05-07T15:33:49Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep
Convolutional Neural Networks [5.380828749672078]
DeepCFD is a convolutional neural network (CNN) based model that efficiently approximates solutions for the problem of non-uniform steady laminar flows.
Using DeepCFD, we found a speedup of up to 3 orders of magnitude compared to the standard CFD approach at a cost of low error rates.
arXiv Detail & Related papers (2020-04-19T12:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.