PointSAGE: Mesh-independent superresolution approach to fluid flow predictions
- URL: http://arxiv.org/abs/2404.04615v1
- Date: Sat, 6 Apr 2024 12:49:09 GMT
- Title: PointSAGE: Mesh-independent superresolution approach to fluid flow predictions
- Authors: Rajat Sarkar, Krishna Sai Sudhir Aripirala, Vishal Sudam Jadhav, Sagar Srinivas Sakhinana, Venkataramana Runkana,
- Abstract summary: High-resolution CFD simulations offer valuable insights into fluid behavior and flow patterns.
As resolution increases, computational data requirements and time increase proportionately.
We propose PointSAGE, a mesh-independent network to learn the complex fluid flow and directly predict fine simulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Computational Fluid Dynamics (CFD) serves as a powerful tool for simulating fluid flow across diverse industries. High-resolution CFD simulations offer valuable insights into fluid behavior and flow patterns, aiding in optimizing design features or enhancing system performance. However, as resolution increases, computational data requirements and time increase proportionately. This presents a persistent challenge in CFD. Recently, efforts have been directed towards accurately predicting fine-mesh simulations using coarse-mesh simulations, with geometry and boundary conditions as input. Drawing inspiration from models designed for super-resolution, deep learning techniques like UNets have been applied to address this challenge. However, these existing methods are limited to structured data and fail if the mesh is unstructured due to its inability to convolute. Additionally, incorporating geometry/mesh information in the training process introduces drawbacks such as increased data requirements, challenges in generalizing to unseen geometries for the same physical phenomena, and issues with robustness to mesh distortions. To address these concerns, we propose a novel framework, PointSAGE a mesh-independent network that leverages the unordered, mesh-less nature of Pointcloud to learn the complex fluid flow and directly predict fine simulations, completely neglecting mesh information. Utilizing an adaptable framework, the model accurately predicts the fine data across diverse point cloud sizes, regardless of the training dataset's dimension. We have evaluated the effectiveness of PointSAGE on diverse datasets in different scenarios, demonstrating notable results and a significant acceleration in computational time in generating fine simulations compared to standard CFD techniques.
Related papers
- FlowBench: A Large Scale Benchmark for Flow Simulation over Complex
Geometries [19.15738125919099]
FlowBench is a dataset for neural simulators with over 10K samples.
FlowBench will enable evaluating the interplay between complex geometry, coupled flow phenomena, and data sufficiency on the performance of neural PDE solvers.
arXiv Detail & Related papers (2024-09-26T16:38:48Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations [49.173541207550485]
Adaptive Meshing By Expert Reconstruction (AMBER) is an imitation learning problem.
AMBER combines a graph neural network with an online data acquisition scheme to predict the projected sizing field of an expert mesh.
We experimentally validate AMBER on 2D meshes and 3D meshes provided by a human expert, closely matching the provided demonstrations and outperforming a single-step CNN baseline.
arXiv Detail & Related papers (2024-06-20T10:01:22Z) - Learning-Based Biharmonic Augmentation for Point Cloud Classification [79.13962913099378]
Biharmonic Augmentation (BA) is a novel and efficient data augmentation technique.
BA diversifies point cloud data by imposing smooth non-rigid deformations on existing 3D structures.
We present AdvTune, an advanced online augmentation system that integrates adversarial training.
arXiv Detail & Related papers (2023-11-10T14:04:49Z) - Conformal Predictions Enhanced Expert-guided Meshing with Graph Neural
Networks [8.736819316856748]
This paper presents a machine learning-based scheme that utilize Graph Neural Networks (GNN) and expert guidance to automatically generate CFD meshes for aircraft models.
We introduce a new 3D segmentation algorithm that outperforms two state-of-the-art models, PointNet++ and PointMLP, for surface classification.
We also present a novel approach to project predictions from 3D mesh segmentation models to CAD surfaces using the conformal predictions method.
arXiv Detail & Related papers (2023-08-14T14:39:13Z) - MeshDQN: A Deep Reinforcement Learning Framework for Improving Meshes in
Computational Fluid Dynamics [0.0]
MeshDQN is developed as a general purpose deep reinforcement learning framework to iteratively coarsen meshes.
A graph neural network based deep Q network is used to select meshes for removal and solution is used to bypass expensive simulations.
MeshDQN successfully improves meshes for two 2D airfoils.
arXiv Detail & Related papers (2022-12-02T20:22:15Z) - Stacked Generative Machine Learning Models for Fast Approximations of
Steady-State Navier-Stokes Equations [1.4150517264592128]
We develop a weakly-supervised approach to solve the steady-state Navier-Stokes equations under various boundary conditions.
We achieve state-of-the-art results without any labeled simulation data.
We train stacked models of increasing complexity generating the numerical solutions for N-S equations.
arXiv Detail & Related papers (2021-12-13T05:08:55Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - CFDNet: a deep learning-based accelerator for fluid simulations [1.5649420473539182]
CFD is used to predict engineering quantities of interest, such as the lift on a plane wing or the drag on a motor vehicle.
Many systems of interest are prohibitively expensive for design optimization, due to the expense of evaluating CFD simulations.
This paper introduces CFDNet -- a physical simulation and deep learning coupled framework.
arXiv Detail & Related papers (2020-05-09T18:06:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.