Segmentation of Macular Edema Datasets with Small Residual 3D U-Net
Architectures
- URL: http://arxiv.org/abs/2005.04697v1
- Date: Sun, 10 May 2020 15:34:46 GMT
- Title: Segmentation of Macular Edema Datasets with Small Residual 3D U-Net
Architectures
- Authors: Jonathan Frawley, Chris G. Willcocks, Maged Habib, Caspar Geenen,
David H. Steel and Boguslaw Obara
- Abstract summary: This paper investigates the application of deep convolutional neural networks with prohibitively small datasets to the problem of macular edema segmentation.
We find that, contrary to popular belief, neural architectures within this application setting are able to achieve close to human-level performance on unseen test images without requiring large numbers of training examples.
- Score: 5.881334886616738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the application of deep convolutional neural networks
with prohibitively small datasets to the problem of macular edema segmentation.
In particular, we investigate several different heavily regularized
architectures. We find that, contrary to popular belief, neural architectures
within this application setting are able to achieve close to human-level
performance on unseen test images without requiring large numbers of training
examples. Annotating these 3D datasets is difficult, with multiple criteria
required. It takes an experienced clinician two days to annotate a single 3D
image, whereas our trained model achieves similar performance in less than a
second. We found that an approach which uses targeted dataset augmentation,
alongside architectural simplification with an emphasis on residual design, has
acceptable generalization performance - despite relying on fewer than 15
training examples.
Related papers
- GS-Pose: Category-Level Object Pose Estimation via Geometric and
Semantic Correspondence [5.500735640045456]
Category-level pose estimation is a challenging task with many potential applications in computer vision and robotics.
We propose to utilize both geometric and semantic features obtained from a pre-trained foundation model.
This requires significantly less data to train than prior methods since the semantic features are robust to object texture and appearance.
arXiv Detail & Related papers (2023-11-23T02:35:38Z) - Multi-task Learning with 3D-Aware Regularization [55.97507478913053]
We propose a structured 3D-aware regularizer which interfaces multiple tasks through the projection of features extracted from an image encoder to a shared 3D feature space.
We show that the proposed method is architecture agnostic and can be plugged into various prior multi-task backbones to improve their performance.
arXiv Detail & Related papers (2023-10-02T08:49:56Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
We focus on improving the generalization to out-of-domain data.
We learn a set of vectors that deform the objects in an adversarial fashion.
We perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model.
arXiv Detail & Related papers (2023-08-29T17:58:55Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - Learning 3D Human Pose Estimation from Dozens of Datasets using a
Geometry-Aware Autoencoder to Bridge Between Skeleton Formats [80.12253291709673]
We propose a novel affine-combining autoencoder (ACAE) method to perform dimensionality reduction on the number of landmarks.
Our approach scales to an extreme multi-dataset regime, where we use 28 3D human pose datasets to supervise one model.
arXiv Detail & Related papers (2022-12-29T22:22:49Z) - Learning Compositional Shape Priors for Few-Shot 3D Reconstruction [36.40776735291117]
We show that complex encoder-decoder architectures exploit large amounts of per-category data.
We propose three ways to learn a class-specific global shape prior, directly from data.
Experiments on the popular ShapeNet dataset show that our method outperforms a zero-shot baseline by over 40%.
arXiv Detail & Related papers (2021-06-11T14:55:49Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
We focus on learning a model from multiple views of a large collection of object instances.
We propose a new neural network design, called warp-conditioned ray embedding (WCR), which significantly improves reconstruction.
Our evaluation demonstrates performance improvements over several deep monocular reconstruction baselines on existing benchmarks.
arXiv Detail & Related papers (2021-03-30T17:57:01Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation [11.873435088539459]
We propose a 3D few shot segmentation framework for accurate organ segmentation using limited training samples of the target organ annotation.
A U-Net like network is designed to predict segmentation by learning the relationship between 2D slices of support data and a query image.
We evaluate our proposed model using three 3D CT datasets with annotations of different organs.
arXiv Detail & Related papers (2020-11-19T01:44:55Z) - The Little W-Net That Could: State-of-the-Art Retinal Vessel
Segmentation with Minimalistic Models [19.089445797922316]
We show that a minimalistic version of a standard U-Net with several orders of magnitude less parameters closely approximates the performance of current best techniques.
We also propose a simple extension, dubbed W-Net, which reaches outstanding performance on several popular datasets.
We also test our approach on the Artery/Vein segmentation problem, where we again achieve results well-aligned with the state-of-the-art.
arXiv Detail & Related papers (2020-09-03T19:59:51Z) - Few-Shot Single-View 3-D Object Reconstruction with Compositional Priors [30.262308825799167]
We show that complex encoder-decoder architectures perform similarly to nearest-neighbor baselines in standard benchmarks.
We propose three approaches that efficiently integrate a class prior into a 3D reconstruction model.
arXiv Detail & Related papers (2020-04-14T04:53:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.