Advancing 3D finger knuckle recognition via deep feature learning
- URL: http://arxiv.org/abs/2301.02934v1
- Date: Sat, 7 Jan 2023 20:55:16 GMT
- Title: Advancing 3D finger knuckle recognition via deep feature learning
- Authors: Kevin H. M. Cheng, Xu Cheng, and Guoying Zhao
- Abstract summary: Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
- Score: 51.871256510747465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contactless 3D finger knuckle patterns have emerged as an effective biometric
identifier due to its discriminativeness, visibility from a distance, and
convenience. Recent research has developed a deep feature collaboration network
which simultaneously incorporates intermediate features from deep neural
networks with multiple scales. However, this approach results in a large
feature dimension, and the trained classification layer is required for
comparing probe samples, which limits the introduction of new classes. This
paper advances this approach by investigating the possibility of learning a
discriminative feature vector with the least possible dimension for
representing 3D finger knuckle images. Experimental results are presented using
a publicly available 3D finger knuckle images database with comparisons to
popular deep learning architectures and the state-of-the-art 3D finger knuckle
recognition methods. The proposed approach offers outperforming results in
classification and identification tasks under the more practical feature
comparison scenario, i.e., using the extracted deep feature instead of the
trained classification layer for comparing probe samples. More importantly,
this approach can offer 99% reduction in the size of feature templates, which
is highly attractive for deploying biometric systems in the real world.
Experiments are also performed using other two public biometric databases with
similar patterns to ascertain the effectiveness and generalizability of our
proposed approach.
Related papers
- Fusion of Minutia Cylinder Codes and Minutia Patch Embeddings for Latent Fingerprint Recognition [1.534667887016089]
We propose a fusion based local matching approach towards latent fingerprint recognition.
Proposed approach would integrate these handcrafted features with a recently proposed deep neural network embedding features in a multi-stage fusion approach.
arXiv Detail & Related papers (2024-03-24T14:29:41Z) - Dual-Perspective Knowledge Enrichment for Semi-Supervised 3D Object
Detection [55.210991151015534]
We present a novel Dual-Perspective Knowledge Enrichment approach named DPKE for semi-supervised 3D object detection.
Our DPKE enriches the knowledge of limited training data, particularly unlabeled data, from two perspectives: data-perspective and feature-perspective.
arXiv Detail & Related papers (2024-01-10T08:56:07Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
We propose a new self-supervised method for pre-training the backbone of deep perception models operating on point clouds.
The core idea is to train the model on a pretext task which is the reconstruction of the surface on which the 3D points are sampled.
The intuition is that if the network is able to reconstruct the scene surface, given only sparse input points, then it probably also captures some fragments of semantic information.
arXiv Detail & Related papers (2022-12-12T13:10:19Z) - Towards Individual Grevy's Zebra Identification via Deep 3D Fitting and
Metric Learning [2.004276260443012]
This paper combines deep learning techniques for species detection, 3D model fitting, and metric learning in one pipeline to perform individual animal identification.
We show in a small study on the SMALST dataset that the use of 3D model fitting can indeed benefit performance.
Back-projected textures from 3D fitted models improve identification accuracy from 48.0% to 56.8% compared to 2D bounding box approaches.
arXiv Detail & Related papers (2022-06-05T20:44:54Z) - Semi-Supervised Adversarial Recognition of Refined Window Structures for
Inverse Procedural Fa\c{c}ade Modeling [17.62526990262815]
This paper proposes a semi-supervised adversarial recognition strategy embedded in inverse procedural modeling.
A simple procedural engine is built inside an existing 3D modeling software, producing fine-grained window geometries.
Experiments using publicly available faccade image datasets reveal that the proposed training strategy can obtain about 10% improvement in classification accuracy.
arXiv Detail & Related papers (2022-01-22T06:34:48Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
Presentation attacks pose major challenges to most of the biometric modalities.
We propose a generalized deep learning-based presentation attack detection network, MVANet.
It is inspired by the simplicity and success of hybrid algorithm or fusion of multiple detection networks.
arXiv Detail & Related papers (2020-10-25T22:42:27Z) - 3D Facial Matching by Spiral Convolutional Metric Learning and a
Biometric Fusion-Net of Demographic Properties [0.0]
Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person.
In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties.
Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems.
arXiv Detail & Related papers (2020-09-10T09:31:47Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.