論文の概要: Prototypical Contrastive Learning of Unsupervised Representations
- arxiv url: http://arxiv.org/abs/2005.04966v5
- Date: Tue, 30 Mar 2021 04:07:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 19:45:42.344854
- Title: Prototypical Contrastive Learning of Unsupervised Representations
- Title(参考訳): 教師なし表現の原型的コントラスト学習
- Authors: Junnan Li, Pan Zhou, Caiming Xiong, Steven C.H. Hoi
- Abstract要約: 原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
- 参考スコア(独自算出の注目度): 171.3046900127166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents Prototypical Contrastive Learning (PCL), an unsupervised
representation learning method that addresses the fundamental limitations of
instance-wise contrastive learning. PCL not only learns low-level features for
the task of instance discrimination, but more importantly, it implicitly
encodes semantic structures of the data into the learned embedding space.
Specifically, we introduce prototypes as latent variables to help find the
maximum-likelihood estimation of the network parameters in an
Expectation-Maximization framework. We iteratively perform E-step as finding
the distribution of prototypes via clustering and M-step as optimizing the
network via contrastive learning. We propose ProtoNCE loss, a generalized
version of the InfoNCE loss for contrastive learning, which encourages
representations to be closer to their assigned prototypes. PCL outperforms
state-of-the-art instance-wise contrastive learning methods on multiple
benchmarks with substantial improvement in low-resource transfer learning. Code
and pretrained models are available at https://github.com/salesforce/PCL.
- Abstract(参考訳): 本稿では,インスタンス単位のコントラスト学習の基本的制約に対処する,教師なし表現学習手法であるPrototypeal Contrastive Learning (PCL)を提案する。
PCLは、インスタンス識別のタスクの低レベル機能だけでなく、学習した埋め込み空間にデータのセマンティック構造を暗黙的にエンコードする。
具体的には,プロトタイプを潜伏変数として導入し,期待最大化フレームワークにおけるネットワークパラメータの最大値推定を支援する。
我々は、クラスタリングとMステップによるプロトタイプの分布を見つけると同時に、コントラスト学習によるネットワークの最適化を行う。
本研究では,コントラスト学習のための情報損失の一般化版であるprotonce lossを提案する。
pclは、低リソース転送学習を大幅に改善した複数のベンチマークで、最先端のインスタンス間コントラスト学習手法を上回っている。
コードと事前訓練されたモデルはhttps://github.com/salesforce/PCL.comで入手できる。
関連論文リスト
- Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
テスト時推論において視覚言語モデル(VLM)が遭遇する分布ドリフトを軽減するために,クラステキスト情報を活用する方法を示す。
本稿では,ラベル割り当て問題の固定セントロイドとしてジェネリッククラステキスト埋め込みを利用して,テスト時間サンプルの擬似ラベルを生成することを提案する。
多様な複雑性を示す複数の人気のあるテスト時間適応ベンチマークの実験は、CLIP-OTの優位性を実証的に示している。
論文 参考訳(メタデータ) (2024-11-26T00:15:37Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - Beyond Prototypes: Semantic Anchor Regularization for Better
Representation Learning [82.29761875805369]
表現学習の最終的な目標の1つは、クラス内のコンパクトさとクラス間の十分な分離性を達成することである。
本稿では,機能セントロイドとして機能する事前定義されたクラスアンカーを用いて,特徴学習を一方向ガイドする新しい視点を提案する。
提案したSemantic Anchor Regularization (SAR) は,既存モデルのプラグアンドプレイ方式で使用することができる。
論文 参考訳(メタデータ) (2023-12-19T05:52:38Z) - KOPPA: Improving Prompt-based Continual Learning with Key-Query Orthogonal Projection and Prototype-based One-Versus-All [24.50129285997307]
本稿では,新しいキークエリ学習戦略を導入し,マッチング効率を向上し,機能変更の課題に対処する。
提案手法は,現在の最先端手法を最大20%の差で超えた結果を達成するためのモデルである。
論文 参考訳(メタデータ) (2023-11-26T20:35:19Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
最近のデータ規制要件に応えて、マシン・アンラーニング(MU)が重要なプロセスとして登場した。
本研究は,ウェイトプルーニングによるモデルスペーシフィケーションという,新しいモデルベース視点を紹介する。
理論と実践の両方において、モデルスパーシティは、近似アンラーナーのマルチ基準アンラーニング性能を高めることができることを示す。
論文 参考訳(メタデータ) (2023-04-11T02:12:02Z) - Rethinking Prototypical Contrastive Learning through Alignment,
Uniformity and Correlation [24.794022951873156]
我々は、アライメント、均一性、相関(PAUC)を通して、プロトタイプ表現を学ぶことを提案する。
具体的には,(1)正の原型から埋め込みを抽出するアライメント損失,(2)原型レベルの特徴を均一に分配するアライメント損失,(3)原型レベルの特徴間の多様性と識別性を増大させる相関損失を補正する。
論文 参考訳(メタデータ) (2022-10-18T22:33:12Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。