論文の概要: On the Transferability of Knowledge among Vehicle Routing Problems by
using Cellular Evolutionary Multitasking
- arxiv url: http://arxiv.org/abs/2005.05066v2
- Date: Sun, 17 May 2020 08:09:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 19:26:56.702654
- Title: On the Transferability of Knowledge among Vehicle Routing Problems by
using Cellular Evolutionary Multitasking
- Title(参考訳): セル進化的マルチタスキングによる車両経路問題間の知識伝達可能性について
- Authors: Eneko Osaba, Aritz D. Martinez, Jesus L. Lobo, Ibai La\~na and Javier
Del Ser
- Abstract要約: この研究は、最近提案されたMFCGA(Multifactorial Cellular Genetic Algorithm)のキャパシタントカールーティング問題(CVRP)への適用に焦点を当てている。
この研究の貢献は2つあるが、一方、MFCGAの自動車ルーティング問題ファミリーへの最初の応用である。他方、問題インスタンス間の正の遺伝伝達可能性の定量的解析に焦点をあてた第2の貢献は、同様に興味深い。
- 参考スコア(独自算出の注目度): 6.943742860591444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multitasking optimization is a recently introduced paradigm, focused on the
simultaneous solving of multiple optimization problem instances (tasks). The
goal of multitasking environments is to dynamically exploit existing
complementarities and synergies among tasks, helping each other through the
transfer of genetic material. More concretely, Evolutionary Multitasking (EM)
regards to the resolution of multitasking scenarios using concepts inherited
from Evolutionary Computation. EM approaches such as the well-known
Multifactorial Evolutionary Algorithm (MFEA) are lately gaining a notable
research momentum when facing with multiple optimization problems. This work is
focused on the application of the recently proposed Multifactorial Cellular
Genetic Algorithm (MFCGA) to the well-known Capacitated Vehicle Routing Problem
(CVRP). In overall, 11 different multitasking setups have been built using 12
datasets. The contribution of this research is twofold. On the one hand, it is
the first application of the MFCGA to the Vehicle Routing Problem family of
problems. On the other hand, equally interesting is the second contribution,
which is focused on the quantitative analysis of the positive genetic
transferability among the problem instances. To do that, we provide an
empirical demonstration of the synergies arisen between the different
optimization tasks.
- Abstract(参考訳): マルチタスク最適化は、複数の最適化問題インスタンス(タスク)の同時解決に焦点を当てた、最近導入されたパラダイムである。
マルチタスク環境の目標は、タスク間の既存の相補性と相乗効果を動的に活用し、遺伝物質の伝達を相互に支援することである。
より具体的には、進化的マルチタスク(EM)は進化的計算から受け継いだ概念を用いたマルチタスクシナリオの解決を考慮している。
MFEA(Multifactorial Evolutionary Algorithm)のようなEMアプローチは、最近、複数の最適化問題に直面しているときに顕著な研究の勢いを増している。
この研究は、最近提案されたMFCGA(Multifactorial Cellular Genetic Algorithm)をよく知られたCVRP(Capacitated Vehicle Routing Problem)に適用することに焦点を当てている。
全体として、11の異なるマルチタスクセットアップが12のデータセットを使用して構築されている。
この研究の貢献は2つある。
一方、MFCGAの自動車ルーティング問題への最初の応用である。
一方,問題事例間の正の遺伝移動可能性の定量的解析に焦点をあてた第2の貢献も同様に興味深い。
そこで我々は,異なる最適化タスク間で発生する相乗効果を実証的に示す。
関連論文リスト
- Multi-Task Learning with Multi-Task Optimization [31.518330903602095]
最適化されているが、よく分散されたモデルの集合が、1つのアルゴリズムパスで異なるトレードオフを具現化していることを示す。
様々な問題設定を解決するために,マルチタスク最適化を用いたマルチタスク学習を提案する。
論文 参考訳(メタデータ) (2024-03-24T14:04:40Z) - Towards Multi-Objective High-Dimensional Feature Selection via
Evolutionary Multitasking [63.91518180604101]
本稿では,高次元特徴選択問題,すなわちMO-FSEMTのための新しいEMTフレームワークを開発する。
タスク固有の知識伝達機構は、各タスクの利点情報を活用するように設計され、高品質なソリューションの発見と効果的な伝達を可能にする。
論文 参考訳(メタデータ) (2024-01-03T06:34:39Z) - Multi-task Bias-Variance Trade-off Through Functional Constraints [102.64082402388192]
マルチタスク学習は、多様なタスクによく機能する関数の集合を取得することを目的としている。
本稿では,2つの極端な学習シナリオ,すなわちすべてのタスクに対する単一関数と,他のタスクを無視するタスク固有関数から直感を抽出する。
本稿では,集中関数に対するドメイン固有解を強制する制約付き学習定式化を導入する。
論文 参考訳(メタデータ) (2022-10-27T16:06:47Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
我々は,様々なタスクを解くことを目的とした回帰関数の集合を適合させることで,マルチタスク学習と呼ばれる問題を考える。
我々の新しい定式化では、これらの関数のパラメータを2つに分けて、互いに近づきながらタスク固有のドメインで学習する。
これにより、異なるドメインにまたがって収集されたデータが、互いのタスクにおける学習パフォーマンスを改善するのに役立つ、クロス・ファーティライズが促進される。
論文 参考訳(メタデータ) (2020-10-24T21:35:57Z) - AT-MFCGA: An Adaptive Transfer-guided Multifactorial Cellular Genetic
Algorithm for Evolutionary Multitasking [17.120962133525225]
本稿では,進化的マルチタスク環境を扱うための適応メタヒューリスティックアルゴリズムを提案する。
AT-MFCGAはセルラーオートマトンを利用して、検討中の最適化問題の知識を交換する機構を実装している。
論文 参考訳(メタデータ) (2020-10-08T12:00:10Z) - Small Towers Make Big Differences [59.243296878666285]
マルチタスク学習は、複数の機械学習タスクを同時に解決することを目的としている。
マルチタスク学習問題に対する優れた解法は、Paretoの最適性に加えて一般化可能であるべきである。
本稿では,マルチタスクモデルのためのパラメータ下自己助詞の手法を提案し,両世界のベストを達成した。
論文 参考訳(メタデータ) (2020-08-13T10:45:31Z) - dMFEA-II: An Adaptive Multifactorial Evolutionary Algorithm for
Permutation-based Discrete Optimization Problems [6.943742860591444]
本稿では、最近導入されたMFEA-II(Multifactorial Evolutionary Algorithm II)を、置換に基づく離散環境に適用する。
提案手法の性能を5種類のマルチタスク設定で評価した。
論文 参考訳(メタデータ) (2020-04-14T14:42:47Z) - COEBA: A Coevolutionary Bat Algorithm for Discrete Evolutionary
Multitasking [9.54239662772307]
マルチタスク環境を扱うための新しいアルゴリズムスキームを提案する。
提案手法はCoevolutionary Bat Algorithmと呼ばれ、共進化的戦略とメタヒューリスティックなBat Algorithmの両方から着想を得た。
論文 参考訳(メタデータ) (2020-03-24T13:37:43Z) - Multifactorial Cellular Genetic Algorithm (MFCGA): Algorithmic Design,
Performance Comparison and Genetic Transferability Analysis [17.120962133525225]
多目的最適化は先進的な研究領域であり、近年顕著な研究の勢いを増している。
本稿では,多因子最適化シナリオのための新しいアルゴリズムスキームを提案する。
提案したMFCGAはセルオートマタの概念に基づいて,問題間の知識交換機構を実装している。
論文 参考訳(メタデータ) (2020-03-24T11:03:55Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
マルチタスク学習は、複数のタスク間で構造を共有するための有望なアプローチとして登場した。
マルチタスク学習がシングルタスク学習と比較して難しい理由は、完全には理解されていない。
本稿では,他の作業の勾配の正規平面上にタスクの勾配を投影する勾配手術の一形態を提案する。
論文 参考訳(メタデータ) (2020-01-19T06:33:47Z) - Pareto Multi-Task Learning [53.90732663046125]
マルチタスク学習は複数の相関タスクを同時に解くための強力な方法である。
異なるタスクが互いに衝突する可能性があるため、すべてのタスクを最適化するひとつのソリューションを見つけることは、しばしば不可能である。
近年,マルチタスク学習を多目的最適化として活用することにより,タスク間のトレードオフが良好である1つのパレート最適解を求める方法が提案されている。
論文 参考訳(メタデータ) (2019-12-30T08:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。