A New Computer-Aided Diagnosis System with Modified Genetic Feature
Selection for BI-RADS Classification of Breast Masses in Mammograms
- URL: http://arxiv.org/abs/2005.05074v1
- Date: Mon, 11 May 2020 13:06:25 GMT
- Title: A New Computer-Aided Diagnosis System with Modified Genetic Feature
Selection for BI-RADS Classification of Breast Masses in Mammograms
- Authors: Said Boumaraf, Xiabi Liu, Chokri Ferkous, and Xiaohong Ma
- Abstract summary: The language used to describe abnormalities in mammographic reports is based on the breast Imaging Reporting and Data System (BI-RADS)
This paper proposes a new and effective computer-aided diagnosis (CAD) system to classify mammographic masses into four assessment categories in BI-RADS.
- Score: 5.395050211492798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mammography remains the most prevalent imaging tool for early breast cancer
screening. The language used to describe abnormalities in mammographic reports
is based on the breast Imaging Reporting and Data System (BI-RADS). Assigning a
correct BI-RADS category to each examined mammogram is a strenuous and
challenging task for even experts. This paper proposes a new and effective
computer-aided diagnosis (CAD) system to classify mammographic masses into four
assessment categories in BI-RADS. The mass regions are first enhanced by means
of histogram equalization and then semiautomatically segmented based on the
region growing technique. A total of 130 handcrafted BI-RADS features are then
extrcated from the shape, margin, and density of each mass, together with the
mass size and the patient's age, as mentioned in BI-RADS mammography. Then, a
modified feature selection method based on the genetic algorithm (GA) is
proposed to select the most clinically significant BI-RADS features. Finally, a
back-propagation neural network (BPN) is employed for classification, and its
accuracy is used as the fitness in GA. A set of 500 mammogram images from the
digital database of screening mammography (DDSM) is used for evaluation. Our
system achieves classification accuracy, positive predictive value, negative
predictive value, and Matthews correlation coefficient of 84.5%, 84.4%, 94.8%,
and 79.3%, respectively. To our best knowledge, this is the best current result
for BI-RADS classification of breast masses in mammography, which makes the
proposed system promising to support radiologists for deciding proper patient
management based on the automatically assigned BI-RADS categories.
Related papers
- Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADS is a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images.
It offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy.
arXiv Detail & Related papers (2023-08-27T22:07:42Z) - Localisation of Mammographic masses by Greedy Backtracking of
Activations in the Stacked Auto-Encoders [0.0]
Mammographic image analysis requires accurate localisation of salient mammographic masses.
We present a novel mammographic mass localisation framework, based on the maximal class activations of the stacked auto-encoders.
arXiv Detail & Related papers (2023-05-09T02:46:13Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection.
High-density breasts show poorer detection performance since dense tissues can mask or even simulate masses.
This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms.
arXiv Detail & Related papers (2022-09-20T15:57:12Z) - VinDr-Mammo: A large-scale benchmark dataset for computer-aided
diagnosis in full-field digital mammography [0.5452925161262461]
VinDr-Mammo is a new benchmark dataset of full-field digital mammography (FFDM)
The dataset consists of 5,000 mammography exams, each of which has four standard views and is double read with disagreement.
It is created for the assessment of Breast Imaging Reporting and Data System (BI-RADS) and density at the breast level.
arXiv Detail & Related papers (2022-03-20T18:17:42Z) - Supervised Machine Learning Algorithm for Detecting Consistency between
Reported Findings and the Conclusions of Mammography Reports [66.89977257992568]
Mammography reports document the diagnosis of patients' conditions.
Many reports contain non-standard terms (non-BI-RADS descriptors) and incomplete statements.
Our aim was to develop a tool to detect such discrepancies by comparing the reported conclusions to those that would be expected based on the reported radiology findings.
arXiv Detail & Related papers (2022-02-28T08:59:04Z) - A novel multi-view deep learning approach for BI-RADS and density
assessment of mammograms [0.5039813366558306]
We propose a novel multi-view DL approach for BI-RADS and density assessment of mammograms.
The proposed approach first deploys deep convolutional networks for feature extraction on each view separately.
The extracted features are then stacked and fed into a Light Gradient Boosting Machine to predict BI-RADS and density scores.
arXiv Detail & Related papers (2021-12-08T10:59:17Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
This work introduces a general pre-processing step for chest x-ray input into machine learning algorithms.
A modified Y-Net architecture based on the VGG11 encoder is used to simultaneously learn geometric orientation and segmentation of radiographs.
Results were evaluated by expert clinicians, with acceptable geometry in 95.8% and annotation mask in 96.2%, compared to 27.0% and 34.9% respectively in control images.
arXiv Detail & Related papers (2020-05-08T02:16:17Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
We introduce a novel top likelihood loss together with a new sampling procedure to select and train the suspected target regions.
We firstly test our proposed method on a private dense mammogram dataset.
Results show that our proposed method greatly reduce the false positive rate and the specificity is increased by 0.25 on detecting mass type cancer.
arXiv Detail & Related papers (2020-03-01T09:04:24Z) - Two-stage multi-scale breast mass segmentation for full mammogram
analysis without user intervention [2.7490008316742096]
Mammography is the primary imaging modality used for early detection and diagnosis of breast cancer.
Among diverse types of breast abnormalities, masses are the most important clinical findings of breast carcinomas.
We present a two-stage multi-scale pipeline that provides accurate mass contours from high-resolution full mammograms.
arXiv Detail & Related papers (2020-02-27T13:16:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.