Localisation of Mammographic masses by Greedy Backtracking of
Activations in the Stacked Auto-Encoders
- URL: http://arxiv.org/abs/2305.05136v1
- Date: Tue, 9 May 2023 02:46:13 GMT
- Title: Localisation of Mammographic masses by Greedy Backtracking of
Activations in the Stacked Auto-Encoders
- Authors: Shamna Pootheri and Govindan V K
- Abstract summary: Mammographic image analysis requires accurate localisation of salient mammographic masses.
We present a novel mammographic mass localisation framework, based on the maximal class activations of the stacked auto-encoders.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mammographic image analysis requires accurate localisation of salient
mammographic masses. In mammographic computer-aided diagnosis, mass or Region
of Interest (ROI) is often marked by physicians and features are extracted from
the marked ROI. In this paper, we present a novel mammographic mass
localisation framework, based on the maximal class activations of the stacked
auto-encoders. We hypothesize that the image regions activating abnormal
classes in mammographic images will be the breast masses which causes the
anomaly. The experiment is conducted using randomly selected 200 mammographic
images (100 normal and 100 abnormal) from IRMA mammographic dataset. Abnormal
mass regions marked by an expert radiologist are used as the ground truth. The
proposed method outperforms existing Deep Convolutional Neural Network (DCNN)
based techniques in terms of salient region detection accuracy. The proposed
greedy backtracking method is more efficient and does not require a vast number
of labelled training images as in DCNN based method. Such automatic
localisation method will assist physicians to make accurate decisions on biopsy
recommendations and treatment evaluations.
Related papers
- Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Weakly supervised alignment and registration of MR-CT for cervical cancer radiotherapy [9.060365057476133]
Cervical cancer is one of the leading causes of death in women.
We propose a preliminary spatial alignment algorithm and a weakly supervised multimodal registration network.
arXiv Detail & Related papers (2024-05-21T15:05:51Z) - Cross-modulated Few-shot Image Generation for Colorectal Tissue
Classification [58.147396879490124]
Our few-shot generation method, named XM-GAN, takes one base and a pair of reference tissue images as input and generates high-quality yet diverse images.
To the best of our knowledge, we are the first to investigate few-shot generation in colorectal tissue images.
arXiv Detail & Related papers (2023-04-04T17:50:30Z) - RGMIM: Region-Guided Masked Image Modeling for Learning Meaningful Representations from X-Ray Images [49.24576562557866]
We propose a novel method called region-guided masked image modeling (RGMIM) for learning meaningful representations from X-ray images.
RGMIM significantly improved performance in small data volumes, such as 5% and 10% of the training set compared to other methods.
arXiv Detail & Related papers (2022-11-01T07:41:03Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Weakly-supervised High-resolution Segmentation of Mammography Images for
Breast Cancer Diagnosis [17.936019428281586]
In cancer diagnosis, interpretability can be achieved by localizing the region of the input image responsible for the output.
We introduce a novel neural network architecture to perform weakly-supervised segmentation of high-resolution images.
We apply this model to breast cancer diagnosis with screening mammography, and validate it on a large clinically-realistic dataset.
arXiv Detail & Related papers (2021-06-13T17:25:21Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
The aim of this study is to build a deep convolutional neural network method for automatic detection, segmentation, and classification of breast lesions in mammography images.
Based on deep learning the Mask-CNN (RoIAlign) method was developed to features selection and extraction; and the classification was carried out by DenseNet architecture.
arXiv Detail & Related papers (2021-01-24T03:30:59Z) - Explainable Disease Classification via weakly-supervised segmentation [4.154485485415009]
Deep learning approaches to Computer Aided Diagnosis (CAD) typically pose the problem as an image classification (Normal or Abnormal) problem.
This paper examines this problem and proposes an approach which mimics the clinical practice of looking for evidence prior to diagnosis.
The proposed solution is then adapted to Breast Cancer detection from mammographic images.
arXiv Detail & Related papers (2020-08-24T09:00:30Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
We introduce a novel top likelihood loss together with a new sampling procedure to select and train the suspected target regions.
We firstly test our proposed method on a private dense mammogram dataset.
Results show that our proposed method greatly reduce the false positive rate and the specificity is increased by 0.25 on detecting mass type cancer.
arXiv Detail & Related papers (2020-03-01T09:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.