An Effective Dynamic Spatio-temporal Framework with Multi-Source
Information for Traffic Prediction
- URL: http://arxiv.org/abs/2005.05128v1
- Date: Fri, 8 May 2020 14:23:52 GMT
- Title: An Effective Dynamic Spatio-temporal Framework with Multi-Source
Information for Traffic Prediction
- Authors: Jichen Wang, Weiguo Zhu, Yongqi Sun, Chunzi Tian
- Abstract summary: The proposed model improves the prediction precision by approximately 3-7 percent on the NYC-Taxi and NYC-Bike datasets.
The experimental results show that the proposed model improves the prediction precision by approximately 3-7 percent on the NYC-Taxi and NYC-Bike datasets.
- Score: 0.22940141855172028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic prediction is necessary not only for management departments to
dispatch vehicles but also for drivers to avoid congested roads. Many traffic
forecasting methods based on deep learning have been proposed in recent years,
and their main aim is to solve the problem of spatial dependencies and temporal
dynamics. In this paper, we propose a useful dynamic model to predict the urban
traffic volume by combining fully bidirectional LSTM, the more complex
attention mechanism, and the external features, including weather conditions
and events. First, we adopt the bidirectional LSTM to obtain temporal
dependencies of traffic volume dynamically in each layer, which is different
from the hybrid methods combining bidirectional and unidirectional ones;
second, we use a more elaborate attention mechanism to learn short-term and
long-term periodic temporal dependencies; and finally, we collect the weather
conditions and events as the external features to further improve the
prediction precision. The experimental results show that the proposed model
improves the prediction precision by approximately 3-7 percent on the NYC-Taxi
and NYC-Bike datasets compared to the most recently developed method, being a
useful tool for the urban traffic prediction.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction [24.26429523848735]
Rapid urbanization has significantly escalated traffic congestion, underscoring the need for advanced congestion prediction services.
We introduce a Congestion Prediction Mixture-of-Experts, CP-MoE, to address the challenges.
CP-MoE has been deployed in DiDi to improve the accuracy and reliability of the travel time estimation system.
arXiv Detail & Related papers (2024-06-14T12:57:17Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
We present a trajectory prediction approach with respect to traffic lights, D2-TPred, using a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG)
Our experimental results show that our model achieves more than 20.45% and 20.78% in terms of ADE and FDE, respectively, on VTP-TL.
arXiv Detail & Related papers (2022-07-21T10:19:07Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - Understanding Dynamic Spatio-Temporal Contexts in Long Short-Term Memory
for Road Traffic Speed Prediction [11.92436948211501]
We propose a dynamically localised long short-term memory (LSTM) model that involves both spatial and temporal dependence between roads.
The LSTM model can deal with sequential data with long dependency as well as complex non-linear features.
Empirical results indicated superior prediction performances of the proposed model compared to two different baseline methods.
arXiv Detail & Related papers (2021-12-04T19:33:05Z) - PSTN: Periodic Spatial-temporal Deep Neural Network for Traffic
Condition Prediction [8.255993195520306]
We propose a periodic deeptemporal neural network (PSTN) with three modules to improve the forecasting performance of traffic conditions.
First, the historical traffic information is folded and fed into a module consisting of a graph convolutional network and a temporal convolutional network.
arXiv Detail & Related papers (2021-08-05T07:42:43Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Traffic congestion anomaly detection and prediction using deep learning [6.370406399003785]
Congestion prediction is a major priority for traffic management centres around the world to ensure timely incident response handling.
The increasing amounts of generated traffic data have been used to train machine learning predictors for traffic, but this is a challenging task due to inter-dependencies of traffic flow both in time and space.
We show that our deep learning models consistently outperform traditional methods, and we conduct a comparative analysis of the optimal time horizon of historical data required to predict traffic flow at different time points in the future.
arXiv Detail & Related papers (2020-06-23T08:49:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.