Understanding Dynamic Spatio-Temporal Contexts in Long Short-Term Memory
for Road Traffic Speed Prediction
- URL: http://arxiv.org/abs/2112.02409v2
- Date: Sat, 17 Jun 2023 01:25:52 GMT
- Title: Understanding Dynamic Spatio-Temporal Contexts in Long Short-Term Memory
for Road Traffic Speed Prediction
- Authors: Won Kyung Lee, Deuk Sin Kwon, So Young Sohn
- Abstract summary: We propose a dynamically localised long short-term memory (LSTM) model that involves both spatial and temporal dependence between roads.
The LSTM model can deal with sequential data with long dependency as well as complex non-linear features.
Empirical results indicated superior prediction performances of the proposed model compared to two different baseline methods.
- Score: 11.92436948211501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable traffic flow prediction is crucial to creating intelligent
transportation systems. Many big-data-based prediction approaches have been
developed but they do not reflect complicated dynamic interactions between
roads considering time and location. In this study, we propose a dynamically
localised long short-term memory (LSTM) model that involves both spatial and
temporal dependence between roads. To do so, we use a localised dynamic spatial
weight matrix along with its dynamic variation. Moreover, the LSTM model can
deal with sequential data with long dependency as well as complex non-linear
features. Empirical results indicated superior prediction performances of the
proposed model compared to two different baseline methods.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Multi-View Neural Differential Equations for Continuous-Time Stream Data in Long-Term Traffic Forecasting [10.70370586311912]
We propose a new NDE architecture called Multi-View Neural Differential Equations.
Our model captures current states, delayed states, and trends in different state variables (views) by learning latent multiple representations.
Our proposed method outperforms the state-of-the-art and achieves robustness with noisy or missing inputs.
arXiv Detail & Related papers (2024-08-12T18:49:02Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraos incorporates chaos theory into long-term time series forecasting.
We show that Attraos outperforms various LTSF methods on mainstream datasets and chaotic datasets with only one-twelfth of the parameters compared to PatchTST.
arXiv Detail & Related papers (2024-02-18T05:35:01Z) - A Dynamic Temporal Self-attention Graph Convolutional Network for
Traffic Prediction [7.23135508361981]
This paper proposes a temporal self-attention graph convolutional network (DT-SGN) model which considers the adjacent matrix as a trainable attention score matrix.
Experiments demonstrate the superiority of our method over state-of-art model-driven model and data-driven models on real-world traffic datasets.
arXiv Detail & Related papers (2023-02-21T03:51:52Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - An Effective Dynamic Spatio-temporal Framework with Multi-Source
Information for Traffic Prediction [0.22940141855172028]
The proposed model improves the prediction precision by approximately 3-7 percent on the NYC-Taxi and NYC-Bike datasets.
The experimental results show that the proposed model improves the prediction precision by approximately 3-7 percent on the NYC-Taxi and NYC-Bike datasets.
arXiv Detail & Related papers (2020-05-08T14:23:52Z) - Forecast Network-Wide Traffic States for Multiple Steps Ahead: A Deep
Learning Approach Considering Dynamic Non-Local Spatial Correlation and
Non-Stationary Temporal Dependency [6.019104024723682]
This research studies two particular problems in traffic forecasting: (1) capture the dynamic and non-local spatial correlation between traffic links and (2) model the dynamics of temporal dependency for accurate multiple steps ahead predictions.
We propose a deep learning framework named Spatial-Temporal Sequence to Sequence model (STSeq2Seq) to address these issues.
This model builds on sequence to sequence (seq2seq) architecture to capture temporal feature and relies on graph convolution for aggregating spatial information.
arXiv Detail & Related papers (2020-04-06T03:40:56Z) - TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular
Dynamics [74.43710101147849]
We present TrajectoryNet, which controls the continuous paths taken between distributions to produce dynamic optimal transport.
We show how this is particularly applicable for studying cellular dynamics in data from single-cell RNA sequencing (scRNA-seq) technologies.
arXiv Detail & Related papers (2020-02-09T21:00:38Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.