Deep Medical Image Analysis with Representation Learning and
Neuromorphic Computing
- URL: http://arxiv.org/abs/2005.05431v1
- Date: Mon, 11 May 2020 20:56:37 GMT
- Title: Deep Medical Image Analysis with Representation Learning and
Neuromorphic Computing
- Authors: Neil Getty, Thomas Brettin, Dong Jin, Rick Stevens, Fangfang Xia
- Abstract summary: We present a capsule network that explicitly learns a representation robust to rotation and affine transformation.
Second, we leverage the latest domain adaptation techniques to achieve a new state-of-the-art accuracy.
Third, we design a spiking neural network trained on the Intel Loihi neuromorphic chip.
- Score: 1.43494686131174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore three representative lines of research and demonstrate the utility
of our methods on a classification benchmark of brain cancer MRI data. First,
we present a capsule network that explicitly learns a representation robust to
rotation and affine transformation. This model requires less training data and
outperforms both the original convolutional baseline and a previous capsule
network implementation. Second, we leverage the latest domain adaptation
techniques to achieve a new state-of-the-art accuracy. Our experiments show
that non-medical images can be used to improve model performance. Finally, we
design a spiking neural network trained on the Intel Loihi neuromorphic chip
(Fig. 1 shows an inference snapshot). This model consumes much lower power
while achieving reasonable accuracy given model reduction. We posit that more
research in this direction combining hardware and learning advancements will
power future medical imaging (on-device AI, few-shot prediction, adaptive
scanning).
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Self-supervised Brain Lesion Generation for Effective Data Augmentation of Medical Images [0.9626666671366836]
We propose a framework to efficiently generate new samples for training a brain lesion segmentation model.
We first train a lesion generator, based on an adversarial autoencoder, in a self-supervised manner.
Next, we utilize a novel image composition algorithm, Soft Poisson Blending, to seamlessly combine synthetic lesions and brain images.
arXiv Detail & Related papers (2024-06-21T01:53:12Z) - Image anomaly detection and prediction scheme based on SSA optimized ResNet50-BiGRU model [6.95262627755758]
This paper introduces a network combining Residual Network (ResNet) and Bidirectional Gated Recurrent Unit (BiGRU)
It can predict potential injury types and provide early warnings by analyzing changes in muscle and bone poses from video images.
Experiments conducted on four datasets demonstrated that our model has the smallest error in image anomaly detection compared to other models.
arXiv Detail & Related papers (2024-06-20T04:26:45Z) - Utilizing Machine Learning and 3D Neuroimaging to Predict Hearing Loss: A Comparative Analysis of Dimensionality Reduction and Regression Techniques [0.0]
We have explored machine learning approaches for predicting hearing loss thresholds on the brain's gray matter 3D images.
In the first phase, we used a 3D CNN model to reduce high-dimensional input into latent space.
In the second phase, we utilized this model to reduce input into rich features.
arXiv Detail & Related papers (2024-04-30T18:39:41Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Medical Transformer: Universal Brain Encoder for 3D MRI Analysis [1.6287500717172143]
Existing 3D-based methods have transferred the pre-trained models to downstream tasks.
They demand a massive amount of parameters to train the model for 3D medical imaging.
We propose a novel transfer learning framework, called Medical Transformer, that effectively models 3D volumetric images in the form of a sequence of 2D image slices.
arXiv Detail & Related papers (2021-04-28T08:34:21Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Predictive modeling of brain tumor: A Deep learning approach [0.0]
This paper presents a Convolutional Neural Network (CNN) based transfer learning approach to classify the brain MRI scans into two classes using three pre-trained models.
Experimental results show that the Resnet-50 model achieves the highest accuracy and least false negative rates as 95% and zero respectively.
arXiv Detail & Related papers (2019-11-06T09:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.