Brain Tumor Classification on MRI in Light of Molecular Markers
- URL: http://arxiv.org/abs/2409.19583v1
- Date: Sun, 29 Sep 2024 07:04:26 GMT
- Title: Brain Tumor Classification on MRI in Light of Molecular Markers
- Authors: Jun Liu, Geng Yuan, Weihao Zeng, Hao Tang, Wenbin Zhang, Xue Lin, XiaoLin Xu, Dong Huang, Yanzhi Wang,
- Abstract summary: Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
- Score: 61.77272414423481
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In research findings, co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas. The ability to predict 1p19q status is critical for treatment planning and patient follow-up. This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection. Although public networks such as RestNet and AlexNet can effectively diagnose brain cancers using transfer learning, the model includes quite a few weights that have nothing to do with medical images. As a result, the diagnostic results are unreliable by the transfer learning model. To deal with the problem of trustworthiness, we create the model from the ground up, rather than depending on a pre-trained model. To enable flexibility, we combined convolution stacking with a dropout and full connect operation, it improved performance by reducing overfitting. During model training, we also supplement the given dataset and inject Gaussian noise. We use three--fold cross-validation to train the best selection model. Comparing InceptionV3, VGG16, and MobileNetV2 fine-tuned with pre-trained models, our model produces better results. On an validation set of 125 codeletion vs. 31 not codeletion images, the proposed network achieves 96.37\% percent F1-score, 97.46\% percent precision, and 96.34\% percent recall when classifying 1p/19q codeletion and not codeletion images.
Related papers
- MOZART: Ensembling Approach for COVID-19 Detection using Chest X-Ray Imagery [0.0]
COVID-19, has led to a global pandemic that strained the healthcare systems.
Traditional convolutional neural networks (CNNs) achieve impressive accuracy.
We introduce the MOZART framework, an ensemble learning approach that enhances the virus detection.
arXiv Detail & Related papers (2024-10-11T21:02:58Z) - A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection [41.454028276986946]
We propose a novel framework Two-Stage Generative Model (TSGM) to improve brain tumor detection and segmentation.
CycleGAN is trained on unpaired data to generate abnormal images from healthy images as data prior.
VE-JP is implemented to reconstruct healthy images using synthetic paired abnormal images as a guide.
arXiv Detail & Related papers (2023-11-06T12:58:26Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Brain Tumor Detection and Classification Using a New Evolutionary
Convolutional Neural Network [18.497065020090062]
The goal of this study is to employ brain MRI images to distinguish between healthy and unhealthy patients.
Deep learning techniques have recently sparked interest as a means of diagnosing brain tumours more accurately and robustly.
arXiv Detail & Related papers (2022-04-26T13:20:42Z) - COVID-19 Detection through Deep Feature Extraction [0.0]
The study proposes a novel approach that utilizes deep feature extraction technique, pre-trained ResNet50 acting as the backbone of the network, combined with Logistic Regression as the head model.
The proposed model achieves a cross-validation accuracy of 100% on the COVID-19 and Normal X-Ray image classes.
arXiv Detail & Related papers (2021-11-21T08:32:08Z) - Classification of Brain Tumours in MR Images using Deep Spatiospatial
Models [0.0]
This paper uses twotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours.
It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18.
arXiv Detail & Related papers (2021-05-28T19:27:51Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z) - Predictive modeling of brain tumor: A Deep learning approach [0.0]
This paper presents a Convolutional Neural Network (CNN) based transfer learning approach to classify the brain MRI scans into two classes using three pre-trained models.
Experimental results show that the Resnet-50 model achieves the highest accuracy and least false negative rates as 95% and zero respectively.
arXiv Detail & Related papers (2019-11-06T09:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.