論文の概要: High-Fidelity Accelerated MRI Reconstruction by Scan-Specific
Fine-Tuning of Physics-Based Neural Networks
- arxiv url: http://arxiv.org/abs/2005.05550v1
- Date: Tue, 12 May 2020 05:10:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 19:00:25.547824
- Title: High-Fidelity Accelerated MRI Reconstruction by Scan-Specific
Fine-Tuning of Physics-Based Neural Networks
- Title(参考訳): Scan-Specific Fine-Tuning of Physics-based Neural Networks による高忠実度加速MRI再構成
- Authors: Seyed Amir Hossein Hosseini, Burhaneddin Yaman, Steen Moeller, and
Mehmet Ak\c{c}akaya
- Abstract要約: 高分解能MRIでは、長時間のスキャンが依然として課題である。
ディープラーニングは、データから直接学習されるデータ駆動型正規化器を提供することによって、MRIの再構築を加速する強力な手段として登場した。
本研究では,トランスファーラーニング手法を用いて,これらレギュレータを自己超越的手法を用いて新しい被験者に微調整する手法を提案する。
- 参考スコア(独自算出の注目度): 3.1498833540989413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long scan duration remains a challenge for high-resolution MRI. Deep learning
has emerged as a powerful means for accelerated MRI reconstruction by providing
data-driven regularizers that are directly learned from data. These data-driven
priors typically remain unchanged for future data in the testing phase once
they are learned during training. In this study, we propose to use a transfer
learning approach to fine-tune these regularizers for new subjects using a
self-supervision approach. While the proposed approach can compromise the
extremely fast reconstruction time of deep learning MRI methods, our results on
knee MRI indicate that such adaptation can substantially reduce the remaining
artifacts in reconstructed images. In addition, the proposed approach has the
potential to reduce the risks of generalization to rare pathological
conditions, which may be unavailable in the training data.
- Abstract(参考訳): 高分解能MRIでは、長時間のスキャンが課題である。
ディープラーニングは、データから直接学習されるデータ駆動型正規化器を提供することによって、MRIの再構築を加速する強力な手段として登場した。
これらのデータ駆動プライオリティは、トレーニング中に学習された後、テストフェーズの将来のデータに対して変化しない。
本研究では,トランスファーラーニング手法を用いて,これらレギュレータを自己超越的手法を用いて新しい被験者に微調整する手法を提案する。
提案手法は, 深層学習MRI法において極めて高速な再構成時間を損なう可能性があるが, 膝関節MRIの結果から, 再構成画像の残存遺物を大幅に減少させる可能性が示唆された。
さらに,本手法は, トレーニングデータでは利用できない稀な病態への一般化のリスクを低減できる可能性が示唆された。
関連論文リスト
- Advancing MRI Reconstruction: A Systematic Review of Deep Learning and Compressed Sensing Integration [1.167578793004766]
長期の取得は、患者の不快感、モーションアーティファクト、リアルタイムアプリケーションの制限につながる可能性がある。
深層学習(DL)はMRI再建のための強力なツールである。
論文 参考訳(メタデータ) (2025-01-24T01:07:58Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - Training Physics-Driven Deep Learning Reconstruction without Raw Data Access for Equitable Fast MRI [2.512491726995032]
物理駆動型ディープラーニング(PD-DL)アプローチは、高速磁気共鳴画像(MRI)スキャンの再構築に人気がある。
PD-DLは、既存の高速MRI技術と比較して加速率が高いが、特定のMRIセンター以外での使用は限られている。
それらの展開の障害の1つは、トレーニングセットでよく表現されていない病理や集団への一般化の難しさである。
CUPIDは、生のk空間データアクセスを必要とするよく確立されたPD-DLトレーニング戦略と同じような品質を実現する。
論文 参考訳(メタデータ) (2024-11-20T03:53:41Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
高速MRI再構成のための新しいテクスチャトランスフォーマーモジュール(TTM)を提案する。
変換器のクエリやキーとしてアンダーサンプルのデータと参照データを定式化する。
提案したTTMは、MRIの再構成手法に積み重ねることで、その性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-11-18T03:06:25Z) - Improved Simultaneous Multi-Slice Functional MRI Using Self-supervised
Deep Learning [0.487576911714538]
自己監視型DL再構成を複数スライス(SMS)同時画像化に拡張します。
その結果, 自己監視型DLは再構成ノイズを低減し, 残存物を抑制することが示された。
後続のfMRI解析はDL処理によって未定であり、時間信号対雑音比の改善はタスク実行間のコヒーレンス推定を高くする。
論文 参考訳(メタデータ) (2021-05-10T17:36:27Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Deep Attentive Wasserstein Generative Adversarial Networks for MRI
Reconstruction with Recurrent Context-Awareness [5.474237208776356]
圧縮センシングベースMRI(CS-MRI)の再生性能は,その遅い反復法とノイズによるアーチファクトの影響を受けている。
本稿では,WGAN(Wasserstein Generative Adversarial Networks)とリカレントニューラルネットワーク(Recurrent Neural Networks)を結合することにより,逐次MRIスライス間の関係をフル活用する,深層学習に基づくCS-MRI再構成手法を提案する。
論文 参考訳(メタデータ) (2020-06-23T11:50:21Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
本稿では,MRIの高速化による高画質画像の再構成を目的としたディープラーニング手法を提案する。
具体的には、畳み込みニューラルネットワーク(CNN)を用いて、エイリアス画像と元の画像の違いを学習する。
ダウンサンプリングされたk空間データの特異性を考慮すると、与えられたk空間データを効果的に活用する学習における損失関数に新しい用語を導入する。
論文 参考訳(メタデータ) (2020-01-13T19:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。