Infinitely Repeated Quantum Games and Strategic Efficiency
- URL: http://arxiv.org/abs/2005.05588v3
- Date: Sat, 27 Nov 2021 07:25:51 GMT
- Title: Infinitely Repeated Quantum Games and Strategic Efficiency
- Authors: Kazuki Ikeda and Shoto Aoki
- Abstract summary: Repeated quantum game theory addresses long term relations among players who choose quantum strategies.
In the conventional quantum game theory, single round quantum games or at most finitely repeated games have been widely studied.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Repeated quantum game theory addresses long term relations among players who
choose quantum strategies. In the conventional quantum game theory, single
round quantum games or at most finitely repeated games have been widely
studied, however less is known for infinitely repeated quantum games.
Investigating infinitely repeated games is crucial since finitely repeated
games do not much differ from single round games. In this work we establish the
concept of general repeated quantum games and show the Quantum Folk Theorem,
which claims that by iterating a game one can find an equilibrium strategy of
the game and receive reward that is not obtained by a Nash equilibrium of the
corresponding single round quantum game. A significant difference between
repeated quantum prisoner's dilemma and repeated classical prisoner's dilemma
is that the classical Pareto optimal solution is not always an equilibrium of
the repeated quantum game when entanglement is sufficiently strong. When
entanglement is sufficiently strong and reward is small, mutual cooperation
cannot be an equilibrium of the repeated quantum game. In addition we present
several concrete equilibrium strategies of the repeated quantum prisoner's
dilemma.
Related papers
- Determining Quantum Correlation through Nash Equilibria in Constant-Sum Games [0.0]
Quantum game theory has emerged as a promising candidate to further the understanding of quantum correlations.
Motivated by this, it is demonstrated that pure strategy Nash equilibria can be utilised as a mechanism to witness and determine quantum correlation.
arXiv Detail & Related papers (2024-10-20T14:27:01Z) - A bound on the quantum value of all compiled nonlocal games [49.32403970784162]
A cryptographic compiler converts any nonlocal game into an interactive protocol with a single computationally bounded prover.
We establish a quantum soundness result for all compiled two-player nonlocal games.
arXiv Detail & Related papers (2024-08-13T08:11:56Z) - Repeated quantum game as a stochastic game: Effects of the shadow of the
future and entanglement [0.0]
We present a systematic investigation of the quantum games, constructed using a novel repeated game protocol.
We find that how two pure strategies fare against each other is crucially dependent on the discount factor.
In the quantum game setup, always-defect strategy can be beaten by the tit-for-tat strategy for high enough discount factor.
arXiv Detail & Related papers (2023-12-08T15:54:51Z) - A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games [102.46640028830441]
We introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as $mathcalO(d/epsilon)$ to $epsilon$-Nash equilibria.
This quadratic speed-up sets a new benchmark for computing $epsilon$-Nash equilibria in quantum zero-sum games.
arXiv Detail & Related papers (2023-11-17T20:38:38Z) - Photonic implementation of the quantum Morra game [69.65384453064829]
We study a faithful translation of a two-player quantum Morra game, which builds on previous work by including the classical game as a special case.
We propose a natural deformation of the game in the quantum regime in which Alice has a winning advantage, breaking the balance of the classical game.
We discuss potential applications of the quantum Morra game to the study of quantum information and communication.
arXiv Detail & Related papers (2023-11-14T19:41:50Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum Extensive Form Games [0.0]
We propose a concept of quantum extensive-form games, which is a quantum extension of classical extensive-form games.
A quantum extensive-form game is also a generalization of quantum learning, including Quantum Generative Adrial Networks.
arXiv Detail & Related papers (2022-07-12T09:58:21Z) - Quantum guessing games with posterior information [68.8204255655161]
A quantum guessing game with posterior information uses quantum systems to encode messages and classical communication to give partial information after a quantum measurement has been performed.
We formalize symmetry of guessing games and characterize the optimal measurements in cases where the symmetry is related to an irreducible representation.
arXiv Detail & Related papers (2021-07-25T19:10:26Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Solving diner's dilemma game, circuit implementation, and verification
on IBMQ simulator [0.0]
We find the quantum strategy that gives maximum payoff for each diner without affecting the payoff and strategy of others.
We present the circuit implementation for the game, design it on the IBM quantum simulator and verify the strategies in the quantum model.
arXiv Detail & Related papers (2020-10-24T08:49:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.