AttViz: Online exploration of self-attention for transparent neural
language modeling
- URL: http://arxiv.org/abs/2005.05716v1
- Date: Tue, 12 May 2020 12:21:40 GMT
- Title: AttViz: Online exploration of self-attention for transparent neural
language modeling
- Authors: Bla\v{z} \v{S}krlj, Nika Er\v{z}en, Shane Sheehan, Saturnino Luz,
Marko Robnik-\v{S}ikonja, Senja Pollak
- Abstract summary: We propose AttViz, an online toolkit for exploration of self-attention---real values associated with individual text tokens.
We show how existing deep learning pipelines can produce outputs suitable for AttViz, offering novel visualizations of the attention heads and their aggregations with minimal effort, online.
- Score: 7.574392147428978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural language models are becoming the prevailing methodology for the tasks
of query answering, text classification, disambiguation, completion and
translation. Commonly comprised of hundreds of millions of parameters, these
neural network models offer state-of-the-art performance at the cost of
interpretability; humans are no longer capable of tracing and understanding how
decisions are being made. The attention mechanism, introduced initially for the
task of translation, has been successfully adopted for other language-related
tasks. We propose AttViz, an online toolkit for exploration of
self-attention---real values associated with individual text tokens. We show
how existing deep learning pipelines can produce outputs suitable for AttViz,
offering novel visualizations of the attention heads and their aggregations
with minimal effort, online. We show on examples of news segments how the
proposed system can be used to inspect and potentially better understand what a
model has learned (or emphasized).
Related papers
- TExplain: Explaining Learned Visual Features via Pre-trained (Frozen) Language Models [14.019349267520541]
We propose a novel method that leverages the capabilities of language models to interpret the learned features of pre-trained image classifiers.
Our approach generates a vast number of sentences to explain the features learned by the classifier for a given image.
Our method, for the first time, utilizes these frequent words corresponding to a visual representation to provide insights into the decision-making process.
arXiv Detail & Related papers (2023-09-01T20:59:46Z) - Towards Vision-Language Mechanistic Interpretability: A Causal Tracing
Tool for BLIP [27.51318030253248]
We adapt a unimodal causal tracing tool to BLIP to enable the study of the neural mechanisms underlying image-conditioned text generation.
We release our BLIP causal tracing tool as open source to enable further experimentation in vision-language mechanistic interpretability.
arXiv Detail & Related papers (2023-08-27T18:46:47Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
Humans can explain their predictions using succinct and intuitive descriptions.
We show that a vision model whose feature representations are text can effectively classify ImageNet images.
arXiv Detail & Related papers (2023-06-29T00:24:42Z) - ABINet++: Autonomous, Bidirectional and Iterative Language Modeling for
Scene Text Spotting [121.11880210592497]
We argue that the limited capacity of language models comes from 1) implicit language modeling; 2) unidirectional feature representation; and 3) language model with noise input.
We propose an autonomous, bidirectional and iterative ABINet++ for scene text spotting.
arXiv Detail & Related papers (2022-11-19T03:50:33Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains.
Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods.
This review presents approaches for self-supervised speech representation learning and their connection to other research areas.
arXiv Detail & Related papers (2022-05-21T16:52:57Z) - Neuro-Symbolic Representations for Video Captioning: A Case for
Leveraging Inductive Biases for Vision and Language [148.0843278195794]
We propose a new model architecture for learning multi-modal neuro-symbolic representations for video captioning.
Our approach uses a dictionary learning-based method of learning relations between videos and their paired text descriptions.
arXiv Detail & Related papers (2020-11-18T20:21:19Z) - Vokenization: Improving Language Understanding with Contextualized,
Visual-Grounded Supervision [110.66085917826648]
We develop a technique that extrapolates multimodal alignments to language-only data by contextually mapping language tokens to their related images.
"vokenization" is trained on relatively small image captioning datasets and we then apply it to generate vokens for large language corpora.
Trained with these contextually generated vokens, our visually-supervised language models show consistent improvements over self-supervised alternatives on multiple pure-language tasks.
arXiv Detail & Related papers (2020-10-14T02:11:51Z) - From text saliency to linguistic objects: learning linguistic
interpretable markers with a multi-channels convolutional architecture [2.064612766965483]
We propose a novel approach to inspect the hidden layers of a fitted CNN in order to extract interpretable linguistic objects from texts exploiting classification process.
We empirically demonstrate the efficiency of our approach on corpora from two different languages: English and French.
arXiv Detail & Related papers (2020-04-07T10:46:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.