論文の概要: Latent Fingerprint Registration via Matching Densely Sampled Points
- arxiv url: http://arxiv.org/abs/2005.05878v2
- Date: Wed, 20 Jan 2021 02:54:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 19:27:19.592550
- Title: Latent Fingerprint Registration via Matching Densely Sampled Points
- Title(参考訳): 厳密なサンプリング点による潜時指紋登録
- Authors: Shan Gu, Jianjiang Feng, Jiwen Lu, Jie Zhou
- Abstract要約: 既存の潜伏指紋登録手法は、主にミツバチ間の対応を確立することに基づいている。
本研究では,一対の指紋間の空間的変換を推定する,最小限の潜伏指紋登録手法を提案する。
提案手法は,特に挑戦的な条件下で,最先端の登録性能を実現する。
- 参考スコア(独自算出の注目度): 100.53031290339483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent fingerprint matching is a very important but unsolved problem. As a
key step of fingerprint matching, fingerprint registration has a great impact
on the recognition performance. Existing latent fingerprint registration
approaches are mainly based on establishing correspondences between minutiae,
and hence will certainly fail when there are no sufficient number of extracted
minutiae due to small fingerprint area or poor image quality. Minutiae
extraction has become the bottleneck of latent fingerprint registration. In
this paper, we propose a non-minutia latent fingerprint registration method
which estimates the spatial transformation between a pair of fingerprints
through a dense fingerprint patch alignment and matching procedure. Given a
pair of fingerprints to match, we bypass the minutiae extraction step and take
uniformly sampled points as key points. Then the proposed patch alignment and
matching algorithm compares all pairs of sampling points and produces their
similarities along with alignment parameters. Finally, a set of consistent
correspondences are found by spectral clustering. Extensive experiments on
NIST27 database and MOLF database show that the proposed method achieves the
state-of-the-art registration performance, especially under challenging
conditions.
- Abstract(参考訳): 潜伏指紋照合は非常に重要だが未解決の問題である。
指紋照合の重要なステップとして、指紋登録は認識性能に大きな影響を与える。
既存の潜伏指紋登録手法は, 主にミツバチの対応の確立に基づいているため, 少ない指紋領域や画像品質の低下により抽出ミツバチの数が不足すると確実に失敗する。
微量抽出は潜在指紋登録のボトルネックとなっている。
本稿では,指紋の密接なアライメントとマッチング手順を通じて,一対の指紋間の空間的変化を推定する非minutiautnt fingerprint registration法を提案する。
1対の指紋が一致すると、minutiaeの抽出ステップをバイパスし、一様にサンプリングされたポイントをキーポイントとして取ります。
そして,パッチアライメントとマッチングアルゴリズムにより,全てのサンプリングポイントを比較し,アライメントパラメータとともに類似点を生成する。
最後に、一貫した対応の集合がスペクトルクラスタリングによって見つかる。
NIST27データベースとMOLFデータベースの大規模な実験により,提案手法は,特に困難な条件下で,最先端の登録性能を実現する。
関連論文リスト
- A Robust Algorithm for Contactless Fingerprint Enhancement and Matching [7.820996917431323]
接触のない指紋画像には 4つの特徴があります
ノイズが少なく、リッジパターンの不連続も少なく、相互運用性の問題を引き起こす。
そこで本研究では,無接触指紋識別ソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-18T10:01:42Z) - Fixed-length Dense Descriptor for Efficient Fingerprint Matching [33.808749518785]
指紋照合のためのFDD(Fixed-length Dense Descriptor)と呼ばれる3次元表現を提案する。
FDDは優れた空間特性を備えており、元の指紋の空間的関係を捉えることができる。
各種指紋データを用いた実験により,FDDが他の固定長ディスクリプタよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-30T14:15:39Z) - A Universal Latent Fingerprint Enhancer Using Transformers [47.87570819350573]
本研究の目的は,ULPrintと呼ばれる高速なフィンガープリント方式を開発し,様々な潜伏指紋のタイプを増強することである。
クローズドセットの識別精度実験では、MSU-AFISの性能は61.56%から75.19%に向上した。
論文 参考訳(メタデータ) (2023-05-31T23:01:11Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
中規模の偽指紋データベースを記述し、2つの異なる指紋認証システムを評価する。
光およびサーマルスイーピングセンサの結果が提供される。
論文 参考訳(メタデータ) (2022-07-11T12:22:52Z) - Pair-Relationship Modeling for Latent Fingerprint Recognition [25.435974669629374]
本稿では,2つの指紋のペア関係を認識の類似性として直接モデル化する手法を提案する。
2つのデータベースに対する実験結果から,提案手法が技術状況より優れていることが示された。
論文 参考訳(メタデータ) (2022-07-02T11:31:31Z) - SpoofGAN: Synthetic Fingerprint Spoof Images [47.87570819350573]
指紋スプーフ検出の進歩に対する大きな制限は、公開可能な大規模な指紋スプーフデータセットの欠如である。
この研究は、これらのアルゴリズムに十分なデータを供給する際に、合成指紋(ライブ指紋とスプーフ指紋の両方)の有用性を実証することを目的としている。
論文 参考訳(メタデータ) (2022-04-13T16:27:27Z) - A Comparative Study of Fingerprint Image-Quality Estimation Methods [54.84936551037727]
画質の悪い画像は、突発的で欠落した特徴をもたらし、システム全体の性能を低下させる。
本稿では,指紋画像品質評価のための既存手法について概説する。
また,指紋画像品質推定アルゴリズムの選定も行った。
論文 参考訳(メタデータ) (2021-11-14T19:53:12Z) - Fingerprint Matching using the Onion Peeling Approach and Turning
Function [0.0]
フィンガープリントは最も人気があり、丈夫な生体計測特性の1つである。
ほとんどの指紋マッチングアルゴリズムはミツバチをベースとしている。
本論文は,タマネギの剥離法を用いた新しいミナミアン系指紋照合法を提案する。
論文 参考訳(メタデータ) (2021-10-03T09:10:44Z) - ProxyFAUG: Proximity-based Fingerprint Augmentation [81.15016852963676]
ProxyFAUGはルールベースで近接性に基づく指紋増強法である。
このデータセット上で最高のパフォーマンスの測位法は、中央値エラーで40%改善され、平均誤差で6%向上した。
論文 参考訳(メタデータ) (2021-02-04T15:59:30Z) - Dense Registration and Mosaicking of Fingerprints by Training an
End-to-End Network [36.50244665233824]
エンド・ツー・エンド・ネットワークをトレーニングし、2つの指紋間の画素単位の変位場を出力する。
また,最適なシーム選択に基づく指紋モザイク手法を提案する。
我々の登録法は,従来の密度の高い登録方法よりも精度と効率が優れている。
論文 参考訳(メタデータ) (2020-04-13T14:47:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。