論文の概要: Progressive growing of self-organized hierarchical representations for
exploration
- arxiv url: http://arxiv.org/abs/2005.06369v1
- Date: Wed, 13 May 2020 15:24:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 10:08:14.756950
- Title: Progressive growing of self-organized hierarchical representations for
exploration
- Title(参考訳): 探索のための自己組織化階層表現の進歩的成長
- Authors: Mayalen Etcheverry, Pierre-Yves Oudeyer, Chris Reinke
- Abstract要約: 中心的な課題は、発見された構造の地図を段階的に構築するために、どのように表現を学ぶかである。
永続的な表現を構築し、探索プロセスを通して破滅的な忘れ物を避けることを目的としている。
第三に、エージェントの発見を粗い方法で構造化できる表現をターゲットとする。
- 参考スコア(独自算出の注目度): 22.950651316748207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing agent that can autonomously discover and learn a diversity of
structures and skills in unknown changing environments is key for lifelong
machine learning. A central challenge is how to learn incrementally
representations in order to progressively build a map of the discovered
structures and re-use it to further explore. To address this challenge, we
identify and target several key functionalities. First, we aim to build lasting
representations and avoid catastrophic forgetting throughout the exploration
process. Secondly we aim to learn a diversity of representations allowing to
discover a "diversity of diversity" of structures (and associated skills) in
complex high-dimensional environments. Thirdly, we target representations that
can structure the agent discoveries in a coarse-to-fine manner. Finally, we
target the reuse of such representations to drive exploration toward an
"interesting" type of diversity, for instance leveraging human guidance.
Current approaches in state representation learning rely generally on
monolithic architectures which do not enable all these functionalities.
Therefore, we present a novel technique to progressively construct a Hierarchy
of Observation Latent Models for Exploration Stratification, called HOLMES.
This technique couples the use of a dynamic modular model architecture for
representation learning with intrinsically-motivated goal exploration processes
(IMGEPs). The paper shows results in the domain of automated discovery of
diverse self-organized patterns, considering as testbed the experimental
framework from Reinke et al. (2019).
- Abstract(参考訳): 未知の環境における構造やスキルの多様性を自律的に発見し、学習できる設計エージェントは、生涯にわたる機械学習の鍵となる。
中心的な課題は、発見されている構造の地図を段階的に構築し、さらに探索するためにそれを再利用するために、インクリメンタルな表現をどのように学習するかである。
この課題に対処するために、我々はいくつかの重要な機能を特定し、ターゲットとする。
まず, 永続的な表現を構築し, 探索過程を通じて破滅的な忘れ物を避けることを目的とする。
第2に、複雑な高次元環境における構造の多様性(および関連するスキル)を発見できる表現の多様性を学習することを目的とする。
第3に,エージェントの発見を粗い方法で構造化できる表現をターゲットとした。
最後に,このような表現の再利用を目標として,例えば人的指導の活用など,"興味をそそる"タイプの多様性への探索を進める。
状態表現学習における現在のアプローチは、一般的にこれらすべての機能を有効にしないモノリシックアーキテクチャに依存している。
そこで本研究では, HOLMES と呼ばれる探索成層のための観測潜在モデル階層を段階的に構築する新しい手法を提案する。
この手法は、動的モジュラーモデルアーキテクチャを用いて、本質的に動機付けされたゴール探索プロセス(IMGEP)を用いた表現学習を行う。
Reinke et al. (2019) の実験フレームワークを検証した結果から, 多様な自己組織化パターンの自動発見の分野における成果を示す。
関連論文リスト
- Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales [54.78115855552886]
本稿では、畳み込みニューラルネットワーク(CNN)のような階層型アーキテクチャを用いて、オーバーコンプリート不変量を構築する方法を示す。
オーバーコンプリート性により、そのタスクはニューラルアーキテクチャサーチ(NAS)のような方法で適応的に形成される。
大規模で頑健で解釈可能な視覚タスクの場合、階層的不変表現は伝統的なCNNや不変量に対する効果的な代替物とみなすことができる。
論文 参考訳(メタデータ) (2024-02-23T16:50:07Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
本研究では,ビジョン・ランゲージ(VL)基礎モデルと大規模言語モデル(LLM)を用いて,オープンワールド環境におけるユニバーサルインタラクション認識について検討する。
我々の設計にはHO Prompt-guided Decoder (HOPD) が含まれており、基礎モデルにおける高次関係表現と画像内の様々なHOペアとの結合を容易にする。
オープンカテゴリの対話認識では,対話文と解釈文の2つのタイプがサポートされている。
論文 参考訳(メタデータ) (2023-11-07T08:27:32Z) - Enhancing Representations through Heterogeneous Self-Supervised Learning [61.40674648939691]
本稿では,HSSL(Heterogeneous Self-Supervised Learning)を提案する。
HSSLは、構造的変化を伴わない表現学習方式で、ベースモデルに新しい特徴を付与する。
HSSLは、様々な自己教師型メソッドと互換性があり、様々な下流タスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-08T10:44:05Z) - Goal Space Abstraction in Hierarchical Reinforcement Learning via
Reachability Analysis [0.0]
本研究では,環境状態の集合を抽象化する創発的表現によるサブゴール発見のための発達機構を提案する。
我々は、この表現をポリシーとともに徐々に学習し、それをナビゲーションタスクで評価して、学習した表現が解釈可能であり、結果としてデータ効率が向上することを示すHRLアルゴリズムを作成する。
論文 参考訳(メタデータ) (2023-09-12T06:53:11Z) - Intrinsic Motivation in Model-based Reinforcement Learning: A Brief
Review [77.34726150561087]
本稿では,エージェントが獲得した世界モデルに基づいて,本質的な動機付けを決定するための既存の手法について考察する。
提案した統合フレームワークは,学習を改善するために,世界モデルと本質的なモチベーションを用いてエージェントのアーキテクチャを記述する。
論文 参考訳(メタデータ) (2023-01-24T15:13:02Z) - Agent Spaces [0.0]
我々は探索を、エージェント自体を爆発的に修正する行為として定義する。
強化学習における多くの重要な構造は、エージェント空間の収束によって引き起こされるトポロジーの下でうまく振る舞うことを示す。
論文 参考訳(メタデータ) (2021-11-11T01:12:17Z) - Self-supervised Visual Reinforcement Learning with Object-centric
Representations [11.786249372283562]
対象中心の表現をモジュラーおよび構造化された観測空間として用いることを提案する。
目標条件付きアテンションポリシーと組み合わせた表現の構造は,自律エージェントが有用なスキルを発見し,学習する上で有効であることを示す。
論文 参考訳(メタデータ) (2020-11-29T14:55:09Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z) - Learning intuitive physics and one-shot imitation using
state-action-prediction self-organizing maps [0.0]
人間は探索と模倣によって学び、世界の因果モデルを構築し、両方を使って新しいタスクを柔軟に解決する。
このような特徴を生み出す単純だが効果的な教師なしモデルを提案する。
エージェントがアクティブな推論スタイルで柔軟に解決する、複数の関連するが異なる1ショットの模倣タスクに対して、その性能を示す。
論文 参考訳(メタデータ) (2020-07-03T12:29:11Z) - Hierarchically Organized Latent Modules for Exploratory Search in
Morphogenetic Systems [21.23182328329019]
多様な表現の階層の教師なし学習を可能にする新しい動的・モジュラーアーキテクチャを導入する。
本システムは,ユーザの嗜好に対して効率よく多様性探索を適応できる発見アシスタントを構築できることを示す。
論文 参考訳(メタデータ) (2020-07-02T15:28:27Z) - Automated Relational Meta-learning [95.02216511235191]
本稿では,クロスタスク関係を自動的に抽出し,メタ知識グラフを構築する自動リレーショナルメタ学習フレームワークを提案する。
我々は,2次元玩具の回帰と少数ショット画像分類に関する広範な実験を行い,ARMLが最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-03T07:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。