Quantum speed limit for thermal states
- URL: http://arxiv.org/abs/2005.06416v2
- Date: Sat, 6 Feb 2021 06:36:13 GMT
- Title: Quantum speed limit for thermal states
- Authors: Nikolai Il`in and Oleg Lychkovskiy
- Abstract summary: Quantum speed limits are rigorous estimates on how fast a state of a quantum system can depart from the initial state in the course of quantum evolution.
Most known quantum speed limits, including the celebrated Mandelstam-Tamm and Margolus-Levitin ones, are general bounds applicable to arbitrary initial states.
Here we derive a quantum speed limit for a closed system initially prepared in a thermal state and evolving under a time-dependent Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum speed limits are rigorous estimates on how fast a state of a quantum
system can depart from the initial state in the course of quantum evolution.
Most known quantum speed limits, including the celebrated Mandelstam-Tamm and
Margolus-Levitin ones, are general bounds applicable to arbitrary initial
states. However, when applied to mixed states of many-body systems, they, as a
rule, dramatically overestimate the speed of quantum evolution and fail to
provide meaningful bounds in the thermodynamic limit. Here we derive a quantum
speed limit for a closed system initially prepared in a thermal state and
evolving under a time-dependent Hamiltonian. This quantum speed limit exploits
the structure of the thermal state and, in particular, explicitly depends on
the temperature. In a broad class of many-body setups it proves to be
drastically stronger than general quantum speed limits.
Related papers
- Quantum Acceleration Limit [0.0]
We prove that the quantum acceleration is upper bounded by the fluctuation in the derivative of the Hamiltonian.
This leads to a universal quantum acceleration limit (QAL) which answers the question: What is the minimum time required for a quantum system to be accelerated.
arXiv Detail & Related papers (2023-12-01T18:45:28Z) - Closed systems refuting quantum-speed-limit hypotheses [0.0]
We show that the Margolus-Levitin quantum speed limit does not extend to closed systems in an obvious way.
We also show that for isolated systems, the Mandelstam-Tamm quantum speed limit and a slightly weakened version of this limit that we call the Bhatia-Davies quantum speed limit always saturate simultaneously.
arXiv Detail & Related papers (2023-03-16T15:55:13Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Quantum Speed Limit From Tighter Uncertainty Relation [0.0]
We prove a new quantum speed limit using the tighter uncertainty relations for pure quantum systems undergoing arbitrary unitary evolution.
We show that the MT bound is a special case of the tighter quantum speed limit derived here.
We illustrate the tighter speed limit for pure states with examples using random Hamiltonians and show that the new quantum speed limit outperforms the MT bound.
arXiv Detail & Related papers (2022-11-26T13:14:58Z) - Stronger Quantum Speed Limit [0.0]
We prove a stronger quantum speed limit (SQSL) for all quantum systems undergoing arbitrary unitary evolution.
The stronger quantum speed limit will have wide range of applications in quantum control, quantum computing and quantum information processing.
arXiv Detail & Related papers (2022-08-10T17:56:51Z) - Generalised quantum speed limit for arbitrary time-continuous evolution [0.0]
We derive a generalised quantum speed limit (GQSL) for arbitrary time-continuous evolution using the geometrical approach of quantum mechanics.
The GQSL is applicable for quantum systems undergoing unitary, non-unitary, completely positive, non-completely positive and relativistic quantum dynamics.
arXiv Detail & Related papers (2022-07-08T21:00:11Z) - Optimal bounds on the speed of subspace evolution [77.34726150561087]
In contrast to the basic Mandelstam-Tamm inequality, we are concerned with a subspace subject to the Schroedinger evolution.
By using the concept of maximal angle between subspaces we derive optimal bounds on the speed of such a subspace evolution.
These bounds may be viewed as further generalizations of the Mandelstam-Tamm inequality.
arXiv Detail & Related papers (2021-11-10T13:32:15Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Quantum speed limits for time evolution of a system subspace [77.34726150561087]
In the present work, we are concerned not with a single state but with a whole (possibly infinite-dimensional) subspace of the system states that are subject to the Schroedinger evolution.
We derive an optimal estimate on the speed of such a subspace evolution that may be viewed as a natural generalization of the Fleming bound.
arXiv Detail & Related papers (2020-11-05T12:13:18Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.