Topological control of quantum speed limits
- URL: http://arxiv.org/abs/2507.15950v1
- Date: Mon, 21 Jul 2025 18:00:07 GMT
- Title: Topological control of quantum speed limits
- Authors: Alexander Kruchkov,
- Abstract summary: We show that even if the quantum state is completely dispersionless, QFI in this state remains momentum-resolved.<n>We find bounds on quantum speed limit which scales as $sqrt|C|$ in a (dispersionless) topological phase.
- Score: 55.2480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Fisher Information (QFI) is a measure quantifying the sensitivity of a quantum state with respect to changes in tuning parameters in quantum metrology, and defining quantum speed limits. We show that even if the quantum state is completely dispersionless, QFI in this state remains momentum-resolved. We compute the QFI for topological phases at integer filling and demonstrate that each momentum-resolved term is fundamentally bounded by quantum geometric and topological invariants, with maximum QFI controlled by topological invariants (Chern number $|C|$). We also finds bounds on quantum speed limit which scales as $\sqrt{|C|}$ in a (dispersionless) topological phase. We conclude that quantum platforms of high Chern numbers $|C| \gg 1$, such as those featuring twisted multilayered van der Waals heterostructures, significantly enhance capacity for quantum Fisher information, and provide practical control over quantum speed limits.
Related papers
- Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.<n>We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.<n>We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Quantum highway: Observation of minimal and maximal speed limits for few and many-body states [19.181412608418608]
Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change.
We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics.
arXiv Detail & Related papers (2024-08-21T18:00:07Z) - Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - Robust estimation of the Quantum Fisher Information on a quantum processor [0.0]
We present the experimental measurement of a series of lower bounds that converge to the quantum Fisher information (QFI)
We estimate the QFI for Greenberg-Horne-Zeilinger states, observing genuine multipartite entanglement.
We investigate the interplay between state optimization and noise induced by increasing the circuit depth.
arXiv Detail & Related papers (2023-07-31T17:49:04Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Exact Quantum Speed Limits [0.0]
We derive exact quantum speed limits for the unitary dynamics of pure-state quantum system.
We estimate the evolution time for two- and higher-dimensional quantum systems.
Results will have a significant impact on our understanding of quantum physics.
arXiv Detail & Related papers (2023-05-05T20:38:54Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Approximation of the Nearest Classical-Classical State to a Quantum
State [0.0]
A revolutionary step in computation is driven by quantumness or quantum correlations, which are permanent in entanglements but often in separable states.
The exact quantification of quantumness is an NP-hard problem; thus, we consider alternative approaches to approximate it.
We show that the objective value decreases along the flow by proofs and numerical results.
arXiv Detail & Related papers (2023-01-23T08:26:17Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Quantum speed limits in arbitrary phase spaces [5.3226107945415135]
Quantum speed limits (QSLs) provide an upper bound for the speed of evolution of quantum states in any physical process.
We derive a universal QSL bound in arbitrary phase spaces that is applicable for both continuous variable systems and finite-dimensional discrete quantum systems.
arXiv Detail & Related papers (2022-10-25T18:56:12Z) - Multipartite Entanglement in Crossing the Quantum Critical Point [6.24959391399729]
We investigate the multipartite entanglement for a slow quantum quench crossing a critical point.
We consider the quantum Ising model and the Lipkin-Meshkov-Glick model, which are local and full-connected quantum systems, respectively.
arXiv Detail & Related papers (2022-02-16T06:58:10Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.