ODVICE: An Ontology-Driven Visual Analytic Tool for Interactive Cohort
Extraction
- URL: http://arxiv.org/abs/2005.06434v1
- Date: Wed, 13 May 2020 17:15:51 GMT
- Title: ODVICE: An Ontology-Driven Visual Analytic Tool for Interactive Cohort
Extraction
- Authors: Mohamed Ghalwash, Zijun Yao, Prithwish Chakrabotry, James Codella,
Daby Sow
- Abstract summary: For uncommon diseases, cohorts extracted from EHRs contain very limited number of records.
We present ODVICE, a data augmentation framework that systematically augments records using a novel ontologically guided Monte-Carlo graph spanning algorithm.
Our results demonstrate the predictive performance of ODVICE augmented cohorts, showing 30% improvement in area under the curve (AUC) over the non-augmented dataset.
- Score: 2.0131681387862153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increased availability of electronic health records (EHR) has enabled
researchers to study various medical questions. Cohort selection for the
hypothesis under investigation is one of the main consideration for EHR
analysis. For uncommon diseases, cohorts extracted from EHRs contain very
limited number of records - hampering the robustness of any analysis. Data
augmentation methods have been successfully applied in other domains to address
this issue mainly using simulated records. In this paper, we present ODVICE, a
data augmentation framework that leverages the medical concept ontology to
systematically augment records using a novel ontologically guided Monte-Carlo
graph spanning algorithm. The tool allows end users to specify a small set of
interactive controls to control the augmentation process. We analyze the
importance of ODVICE by conducting studies on MIMIC-III dataset for two
learning tasks. Our results demonstrate the predictive performance of ODVICE
augmented cohorts, showing ~30% improvement in area under the curve (AUC) over
the non-augmented dataset and other data augmentation strategies.
Related papers
- EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling [22.94521527609479]
EMERGE is a Retrieval-Augmented Generation driven framework aimed at enhancing multimodal EHR predictive modeling.
Our approach extracts entities from both time-series data and clinical notes by prompting Large Language Models.
The extracted knowledge is then used to generate task-relevant summaries of patients' health statuses.
arXiv Detail & Related papers (2024-05-27T10:53:15Z) - ICU Bloodstream Infection Prediction: A Transformer-Based Approach for EHR Analysis [0.0]
We introduce RatchetEHR, a novel framework designed for the predictive analysis of electronic health records (EHR) data in intensive care unit (ICU) settings.
R RatchetEHR demonstrates superior predictive performance compared to other methods, including RNN, LSTM, and XGBoost.
A key innovation in RatchetEHR is the integration of the Graph Convolutional Transformer (GCT) component, which significantly enhances the ability to identify hidden structural relationships.
arXiv Detail & Related papers (2024-05-01T19:00:30Z) - Enhancing Readmission Prediction with Deep Learning: Extracting Biomedical Concepts from Clinical Texts [0.26813152817733554]
This study focuses on predicting patient readmission within less than 30 days using text mining techniques.
Various machine learning and deep learning methods were employed to develop a classification model for this purpose.
arXiv Detail & Related papers (2024-03-12T09:03:44Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - On the Importance of Clinical Notes in Multi-modal Learning for EHR Data [0.0]
Previous research has shown that jointly using clinical notes with electronic health record data improved predictive performance for patient monitoring.
We first confirm that performance significantly improves over state-of-the-art EHR data models when combining EHR data and clinical notes.
We then provide an analysis showing improvements arise almost exclusively from a subset of notes containing broader context on patient state rather than clinician notes.
arXiv Detail & Related papers (2022-12-06T15:18:57Z) - Enabling scalable clinical interpretation of ML-based phenotypes using
real world data [0.0]
This study investigates approaches to perform patient stratification analysis at scale using large EHR datasets.
We have developed several tools to facilitate the clinical evaluation and interpretation of unsupervised patient stratification results.
arXiv Detail & Related papers (2022-08-02T17:31:03Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
Pre-training has shown success in different areas of machine learning, such as Computer Vision (CV), Natural Language Processing (NLP) and medical imaging.
In this paper, we apply unsupervised pre-training to heterogeneous, multi-modal EHR data for patient outcome prediction.
We find that our proposed graph based pre-training method helps in modeling the data at a population level.
arXiv Detail & Related papers (2022-03-23T17:59:45Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.