Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency Market Manipulations
- URL: http://arxiv.org/abs/2005.06610v2
- Date: Mon, 2 Sep 2024 10:25:39 GMT
- Title: Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency Market Manipulations
- Authors: Massimo La Morgia, Alessandro Mei, Francesco Sassi, Julinda Stefa,
- Abstract summary: We perform an in-depth analysis of pump and dump schemes organized by communities over the Internet.
We observe how these communities are organized and how they carry out the fraud.
We introduce an approach to detect the fraud in real time that outperforms the current state of the art.
- Score: 50.521292491613224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last years, cryptocurrencies are increasingly popular. Even people who are not experts have started to invest in these securities and nowadays cryptocurrency exchanges process transactions for over 100 billion US dollars per month. However, many cryptocurrencies have low liquidity and therefore they are highly prone to market manipulation schemes. In this paper, we perform an in-depth analysis of pump and dump schemes organized by communities over the Internet. We observe how these communities are organized and how they carry out the fraud. Then, we report on two case studies related to pump and dump groups. Lastly, we introduce an approach to detect the fraud in real time that outperforms the current state of the art, so to help investors stay out of the market when a pump and dump scheme is in action.
Related papers
- From HODL to MOON: Understanding Community Evolution, Emotional
Dynamics, and Price Interplay in the Cryptocurrency Ecosystem [13.409057009695513]
We analyze over 130M posts on 122 cryptocurrency-related subreddits on Reddit.
We find an overall surge in cryptocurrency-related activity in 2021, followed by a sharp decline.
We find that joy becomes a prominent indicator during upward market performance, while a decline in the market manifests an increase in anger.
arXiv Detail & Related papers (2023-12-12T19:56:36Z) - Interplay between Cryptocurrency Transactions and Online Financial
Forums [41.94295877935867]
This study focuses on the study of the interplay between these cryptocurrency forums and fluctuations in cryptocurrency values.
It shows that the activity of Bitcointalk forum keeps a direct relationship with the trend in the values of BTC.
The experiment highlights that forum data can explain specific events in the financial field.
arXiv Detail & Related papers (2023-11-27T16:25:28Z) - A Game of NFTs: Characterizing NFT Wash Trading in the Ethereum Blockchain [53.8917088220974]
The Non-Fungible Token (NFT) market experienced explosive growth in 2021, with a monthly trade volume reaching $6 billion in January 2022.
Concerns have emerged about possible wash trading, a form of market manipulation in which one party repeatedly trades an NFT to inflate its volume artificially.
We find that wash trading affects 5.66% of all NFT collections, with a total artificial volume of $3,406,110,774.
arXiv Detail & Related papers (2022-12-02T15:03:35Z) - Token Spammers, Rug Pulls, and SniperBots: An Analysis of the Ecosystem of Tokens in Ethereum and in the Binance Smart Chain (BNB) [50.888293380932616]
We study the ecosystem of the tokens and liquidity pools.
We find that about 60% of tokens are active for less than one day.
We estimate that 1-day rug pulls generated $240 million in profits.
arXiv Detail & Related papers (2022-06-16T14:20:19Z) - Cryptocurrency Bubble Detection: A New Stock Market Dataset, Financial
Task & Hyperbolic Models [31.690290125073197]
We present and publicly release CryptoBubbles, a novel multi-span identification task for bubble detection.
We develop a set of sequence-to-sequence hyperbolic models suited to this multi-span identification task.
We show the practical applicability of CryptoBubbles and hyperbolic models on Reddit and Twitter.
arXiv Detail & Related papers (2022-05-11T08:10:02Z) - Crypto Pump and Dump Detection via Deep Learning Techniques [0.0]
pump and dump schemes are some of the most common fraudulent activity regarding cryptocurrencies.
We propose the novel application of two existing neural network architectures to this problem domain.
We show that deep learning solutions can significantly outperform all other existing pump and dump detection methods for cryptocurrencies.
arXiv Detail & Related papers (2022-05-10T03:24:32Z) - The Doge of Wall Street: Analysis and Detection of Pump and Dump Cryptocurrency Manipulations [50.521292491613224]
This paper performs an in-depth analysis of two market manipulations organized by communities over the Internet: The pump and dump and the crowd pump.
The pump and dump scheme is a fraud as old as the stock market. Now, it got new vitality in the loosely regulated market of cryptocurrencies.
We report on three case studies related to pump and dump groups.
arXiv Detail & Related papers (2021-05-03T10:20:47Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z) - Ascertaining price formation in cryptocurrency markets with DeepLearning [8.413339060443878]
This paper is inspired by the recent success of using deep learning for stock market prediction.
We analyze and present the characteristics of the cryptocurrency market in a high-frequency setting.
We achieve a consistent $78%$ accuracy on the prediction of the mid-price movement on live exchange rate of Bitcoins vs US dollars.
arXiv Detail & Related papers (2020-02-09T20:23:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.