論文の概要: Towards Socially Responsible AI: Cognitive Bias-Aware Multi-Objective
Learning
- arxiv url: http://arxiv.org/abs/2005.06618v2
- Date: Tue, 28 Jul 2020 07:20:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 04:39:02.521755
- Title: Towards Socially Responsible AI: Cognitive Bias-Aware Multi-Objective
Learning
- Title(参考訳): 社会的責任を負うAIに向けて:認知バイアスを意識した多目的学習
- Authors: Procheta Sen, Debasis Ganguly
- Abstract要約: 人類社会は、社会的偏見や大量不正につながる認知バイアスに悩まされた長い歴史を持っていた。
偏見を考慮した多目的学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 24.522730093209262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human society had a long history of suffering from cognitive biases leading
to social prejudices and mass injustice. The prevalent existence of cognitive
biases in large volumes of historical data can pose a threat of being
manifested as unethical and seemingly inhuman predictions as outputs of AI
systems trained on such data. To alleviate this problem, we propose a
bias-aware multi-objective learning framework that given a set of identity
attributes (e.g. gender, ethnicity etc.) and a subset of sensitive categories
of the possible classes of prediction outputs, learns to reduce the frequency
of predicting certain combinations of them, e.g. predicting stereotypes such as
`most blacks use abusive language', or `fear is a virtue of women'. Our
experiments conducted on an emotion prediction task with balanced class priors
shows that a set of baseline bias-agnostic models exhibit cognitive biases with
respect to gender, such as women are prone to be afraid whereas men are more
prone to be angry. In contrast, our proposed bias-aware multi-objective
learning methodology is shown to reduce such biases in the predictied emotions.
- Abstract(参考訳): 人間社会は、社会的偏見や集団的不正につながる認知バイアスに苦しむ長い歴史があった。
大量の歴史的データに認知バイアスが存在することは、そのようなデータに基づいて訓練されたAIシステムの出力として、非倫理的で一見非人間的な予測として表される恐れがある。
この問題を軽減するために,アイデンティティ属性(性別,民族性など)のセットと,予測出力の可能なクラスの機密カテゴリのサブセットを付与したバイアス対応多目的学習フレームワークを提案し,それらの組み合わせを予測する頻度,例えば「ほとんどの黒人は乱用言語を使用する」や「フェールは女性の徳である」といったステレオタイプを予測することを学ぶ。
バランスの取れたクラス先行の感情予測タスクで実施した実験では,男性の方が怒りやすいのに対して,女性は怖がる傾向にあるなど,性別に対する認知バイアスがベースラインバイアス非依存モデルで示されることが示された。
対照的に,提案するバイアス対応多目的学習手法は,予測された感情のバイアスを低減できることが示されている。
関連論文リスト
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
我々はトランスジェンダー、ノンバイナリ、その他のジェンダー・ディバースのアイデンティティを中心とし、アライメント手順が既存のジェンダー・ディバースバイアスとどのように相互作用するかを検討する。
以上の結果から,DPO対応モデルは特に教師付き微調整に敏感であることが示唆された。
DPOとより広範なアライメントプラクティスに合わせたレコメンデーションで締めくくります。
論文 参考訳(メタデータ) (2024-11-06T06:50:50Z) - Revealing and Reducing Gender Biases in Vision and Language Assistants (VLAs) [82.57490175399693]
画像・テキスト・ビジョン言語アシスタント(VLA)22種における性別バイアスの検討
以上の結果から,VLAは実世界の作業不均衡など,データ中の人間のバイアスを再現する可能性が示唆された。
これらのモデルにおける性別バイアスを排除するため、微調整に基づくデバイアス法は、下流タスクにおけるデバイアスとパフォーマンスの最良のトレードオフを実現する。
論文 参考訳(メタデータ) (2024-10-25T05:59:44Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
画像キャプションタスクのためのモデルに基づく評価指標において、性別バイアスの体系的研究を行う。
偏りのある世代と偏りのない世代を区別できないことを含む、これらの偏りのあるメトリクスを使用することによる負の結果を実証する。
人間の判断と相関を損なうことなく、測定バイアスを緩和する簡便で効果的な方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T04:27:40Z) - Fairness in AI Systems: Mitigating gender bias from language-vision
models [0.913755431537592]
既存のデータセットにおける性別バイアスの影響について検討する。
本稿では,キャプションに基づく言語視覚モデルにおけるその影響を緩和する手法を提案する。
論文 参考訳(メタデータ) (2023-05-03T04:33:44Z) - Blacks is to Anger as Whites is to Joy? Understanding Latent Affective
Bias in Large Pre-trained Neural Language Models [3.5278693565908137]
感情バイアス(Affective Bias)とは、特定の性別、人種、宗教に対する感情の関連性である。
PLMに基づく感情検出システムに統計的に有意な感情バイアスが存在することを示す。
論文 参考訳(メタデータ) (2023-01-21T20:23:09Z) - Assessing Gender Bias in Predictive Algorithms using eXplainable AI [1.9798034349981162]
予測アルゴリズムは、医学や教育など様々な分野で利益をもたらす強力な可能性を秘めている。
彼らは人間に存在する偏見と偏見を継承することができる。
結果は、不公平な結果を生み出すエラーを体系的に繰り返すことができます。
論文 参考訳(メタデータ) (2022-03-19T07:47:45Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
大規模事前訓練言語モデル(LM)は、望ましくない表現バイアスを示すのに潜在的に危険である。
テキスト生成における社会的バイアスを軽減するためのステップを提案する。
我々の経験的結果と人的評価は、重要な文脈情報を保持しながらバイアスを緩和する効果を示す。
論文 参考訳(メタデータ) (2021-06-24T17:52:43Z) - Responsible AI: Gender bias assessment in emotion recognition [6.833826997240138]
本研究は、顔認識のための深層学習手法における性別バイアスの研究を目的とする。
より多くのバイアスニューラルネットワークは、男性と女性のテストセット間の感情認識のより大きな精度のギャップを示しています。
論文 参考訳(メタデータ) (2021-03-21T17:00:21Z) - Image Representations Learned With Unsupervised Pre-Training Contain
Human-like Biases [3.0349733976070015]
本研究では,社会概念の表現とイメージの属性の相関関係を定量化する手法を開発した。
一般的なベンチマーク画像データセットであるImageNetでトレーニングされた最先端の教師なしモデルは、人種、性別、交差点バイアスを自動的に学習する。
論文 参考訳(メタデータ) (2020-10-28T15:55:49Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。