論文の概要: Domain Conditioned Adaptation Network
- arxiv url: http://arxiv.org/abs/2005.06717v1
- Date: Thu, 14 May 2020 04:23:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 05:16:11.794788
- Title: Domain Conditioned Adaptation Network
- Title(参考訳): ドメイン条件適応ネットワーク
- Authors: Shuang Li, Chi Harold Liu, Qiuxia Lin, Binhui Xie, Zhengming Ding, Gao
Huang, Jian Tang
- Abstract要約: 本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
- 参考スコア(独自算出の注目度): 90.63261870610211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tremendous research efforts have been made to thrive deep domain adaptation
(DA) by seeking domain-invariant features. Most existing deep DA models only
focus on aligning feature representations of task-specific layers across
domains while integrating a totally shared convolutional architecture for
source and target. However, we argue that such strongly-shared convolutional
layers might be harmful for domain-specific feature learning when source and
target data distribution differs to a large extent. In this paper, we relax a
shared-convnets assumption made by previous DA methods and propose a Domain
Conditioned Adaptation Network (DCAN), which aims to excite distinct
convolutional channels with a domain conditioned channel attention mechanism.
As a result, the critical low-level domain-dependent knowledge could be
explored appropriately. As far as we know, this is the first work to explore
the domain-wise convolutional channel activation for deep DA networks.
Moreover, to effectively align high-level feature distributions across two
domains, we further deploy domain conditioned feature correction blocks after
task-specific layers, which will explicitly correct the domain discrepancy.
Extensive experiments on three cross-domain benchmarks demonstrate the proposed
approach outperforms existing methods by a large margin, especially on very
tough cross-domain learning tasks.
- Abstract(参考訳): ドメイン不変性を求めることによって、深層ドメイン適応(DA)を育むための研究努力が続けられている。
既存のディープDAモデルのほとんどは、ソースとターゲットのための完全に共有された畳み込みアーキテクチャを統合しながら、ドメイン間でタスク固有のレイヤの機能表現の整合性のみに焦点を当てています。
しかし、そのような強い共有畳み込み層は、ソースとターゲットのデータ分布が大きく異なる場合、ドメイン固有の特徴学習に有害である可能性がある。
本稿では,従来のDA手法による共有共振器の仮定を緩和し,ドメイン条件付きチャネルアテンション機構を用いた独自の畳み込みチャネルのエキサイティングを目的としたドメイン条件適応ネットワーク(DCAN)を提案する。
その結果、批判的な低レベルなドメイン依存の知識を適切に探究することができる。
私たちが知る限りでは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求するのはこれが初めてです。
さらに,2つのドメインにまたがる高レベルな特徴分布を効果的に整列させるため,タスク固有のレイヤの後にドメイン条件付き特徴補正ブロックを配置する。
3つのクロスドメインベンチマークに関する大規模な実験は、提案手法が既存の手法、特に非常に厳しいクロスドメイン学習タスクよりも優れていることを示している。
関連論文リスト
- Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for
Multi-Source Domain Adaptation [2.734665397040629]
マルチソースUnsupervised Domain Adaptationはラベル付きデータを持つ複数のソースドメインからラベル付きターゲットドメインに知識を転送する。
異なるドメインとターゲットドメイン内のノイズの多い擬似ラベル間の分散の相違は、どちらもパフォーマンスのボトルネックにつながる。
本稿では,意識駆動型ドメイン融合(ADNT)と雑音耐性学習(ADNT)を統合し,上記の2つの問題に対処するアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-05T01:08:41Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
ドメインの一般化は、モデルを目に見えないターゲットのドメインに安全に転送することを目的としています。
AdaODMは、異なるターゲットドメインに対するテスト時にソースモデルを適応的に修正する。
その結果,AdaODMは未確認領域の一般化能力を安定的に向上することがわかった。
論文 参考訳(メタデータ) (2022-08-03T11:51:11Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
マルチソースアン教師付きドメイン適応(MSDA)は、ソースモデルの袋から弱い知識を割り当てることで、ラベルのないドメインの予測子を学習することを目的としている。
我々は,DomaIn Alignment Layers (MS-DIAL) のマルチソースバージョンを予測器の異なるレベルに埋め込むことを提案する。
我々の手法は最先端のMSDA法を改善することができ、分類精度の相対利得は+30.64%に達する。
論文 参考訳(メタデータ) (2021-09-06T18:41:19Z) - Generalized Domain Conditioned Adaptation Network [33.13337928537281]
ドメイン適応(DA)はラベル付きソースドメインで学んだ知識をラベル付けされていないが関連するターゲットドメインに転送しようとする。
DAの最近の進歩は、主にソースとターゲットの分布を調整することによって進みます。
汎用ドメイン条件適応ネットワーク(GDCAN)を開発し、各アテンションモジュールでドメインチャネルのアクティベーションが個別にモデル化されるべきかどうかを自動決定する。
論文 参考訳(メタデータ) (2021-03-23T06:24:26Z) - FixBi: Bridging Domain Spaces for Unsupervised Domain Adaptation [26.929772844572213]
我々は、ソースとターゲットドメイン間の複数の中間ドメインを拡大するために、固定比に基づくミックスアップを導入する。
我々は、相補的な特性を持つソース支配モデルとターゲット支配モデルを訓練する。
提案手法により,モデルが対象ドメインに徐々にドメイン知識を伝達する。
論文 参考訳(メタデータ) (2020-11-18T11:58:19Z) - Channel-wise Alignment for Adaptive Object Detection [66.76486843397267]
遺伝的物体検出は、ディープ畳み込みニューラルネットワークの開発によって大いに促進されている。
このタスクの既存の方法は、通常、画像全体や関心の対象に基づいて、ハイレベルなアライメントに注意を向ける。
本稿では,チャネルワイドアライメント(チャネルワイドアライメント)という,まったく異なる観点からの適応を実現する。
論文 参考訳(メタデータ) (2020-09-07T02:42:18Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Deep Residual Correction Network for Partial Domain Adaptation [79.27753273651747]
ディープドメイン適応法は、よくラベルされたソースドメインから異なるが関連する未ラベルのターゲットドメインへの転送可能な表現を学習することで、魅力的なパフォーマンスを実現している。
本稿では,効率よく実装された深部残留補正網を提案する。
部分的、伝統的、微粒なクロスドメイン認識に関する総合的な実験は、DRCNが競合深いドメイン適応アプローチよりも優れていることを示している。
論文 参考訳(メタデータ) (2020-04-10T06:07:16Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
本稿では,クロスドメインオブジェクト検出のための特徴適応手法を提案する。
粗粒度では、アテンション機構を採用して前景領域を抽出し、その辺縁分布に応じて整列する。
粒度の細かい段階では、同じカテゴリのグローバルプロトタイプと異なるドメインとの距離を最小化することにより、前景の条件分布アライメントを行う。
論文 参考訳(メタデータ) (2020-03-23T13:40:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。