Domain Conditioned Adaptation Network
- URL: http://arxiv.org/abs/2005.06717v1
- Date: Thu, 14 May 2020 04:23:24 GMT
- Title: Domain Conditioned Adaptation Network
- Authors: Shuang Li, Chi Harold Liu, Qiuxia Lin, Binhui Xie, Zhengming Ding, Gao
Huang, Jian Tang
- Abstract summary: We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
- Score: 90.63261870610211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tremendous research efforts have been made to thrive deep domain adaptation
(DA) by seeking domain-invariant features. Most existing deep DA models only
focus on aligning feature representations of task-specific layers across
domains while integrating a totally shared convolutional architecture for
source and target. However, we argue that such strongly-shared convolutional
layers might be harmful for domain-specific feature learning when source and
target data distribution differs to a large extent. In this paper, we relax a
shared-convnets assumption made by previous DA methods and propose a Domain
Conditioned Adaptation Network (DCAN), which aims to excite distinct
convolutional channels with a domain conditioned channel attention mechanism.
As a result, the critical low-level domain-dependent knowledge could be
explored appropriately. As far as we know, this is the first work to explore
the domain-wise convolutional channel activation for deep DA networks.
Moreover, to effectively align high-level feature distributions across two
domains, we further deploy domain conditioned feature correction blocks after
task-specific layers, which will explicitly correct the domain discrepancy.
Extensive experiments on three cross-domain benchmarks demonstrate the proposed
approach outperforms existing methods by a large margin, especially on very
tough cross-domain learning tasks.
Related papers
- Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for
Multi-Source Domain Adaptation [2.734665397040629]
Multi-source Unsupervised Domain Adaptation transfers knowledge from multiple source domains with labeled data to an unlabeled target domain.
The distribution discrepancy between different domains and the noisy pseudo-labels in the target domain both lead to performance bottlenecks.
We propose an approach that integrates Attention-driven Domain fusion and Noise-Tolerant learning (ADNT) to address the two issues mentioned above.
arXiv Detail & Related papers (2022-08-05T01:08:41Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
Multi-source unsupervised domain adaptation (MSDA) aims at learning a predictor for an unlabeled domain by assigning weak knowledge from a bag of source models.
We propose to embed Multi-Source version of DomaIn Alignment Layers (MS-DIAL) at different levels of the predictor.
Our approach can improve state-of-the-art MSDA methods, yielding relative gains of up to +30.64% on their classification accuracies.
arXiv Detail & Related papers (2021-09-06T18:41:19Z) - Generalized Domain Conditioned Adaptation Network [33.13337928537281]
Domain Adaptation (DA) attempts to transfer knowledge learned in labeled source domain to the unlabeled but related target domain.
Recent advances in DA mainly proceed by aligning the source and target distributions.
We develop Generalized Domain Conditioned Adaptation Network (GDCAN) to automatically determine whether domain channel activations should be separately modeled in each attention module.
arXiv Detail & Related papers (2021-03-23T06:24:26Z) - FixBi: Bridging Domain Spaces for Unsupervised Domain Adaptation [26.929772844572213]
We introduce a fixed ratio-based mixup to augment multiple intermediate domains between the source and target domain.
We train the source-dominant model and the target-dominant model that have complementary characteristics.
Through our proposed methods, the models gradually transfer domain knowledge from the source to the target domain.
arXiv Detail & Related papers (2020-11-18T11:58:19Z) - Channel-wise Alignment for Adaptive Object Detection [66.76486843397267]
Generic object detection has been immensely promoted by the development of deep convolutional neural networks.
Existing methods on this task usually draw attention on the high-level alignment based on the whole image or object of interest.
In this paper, we realize adaptation from a thoroughly different perspective, i.e., channel-wise alignment.
arXiv Detail & Related papers (2020-09-07T02:42:18Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Deep Residual Correction Network for Partial Domain Adaptation [79.27753273651747]
Deep domain adaptation methods have achieved appealing performance by learning transferable representations from a well-labeled source domain to a different but related unlabeled target domain.
This paper proposes an efficiently-implemented Deep Residual Correction Network (DRCN)
Comprehensive experiments on partial, traditional and fine-grained cross-domain visual recognition demonstrate that DRCN is superior to the competitive deep domain adaptation approaches.
arXiv Detail & Related papers (2020-04-10T06:07:16Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
This paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection.
At the coarse-grained stage, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions.
At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains.
arXiv Detail & Related papers (2020-03-23T13:40:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.