Adaptive Domain Generalization via Online Disagreement Minimization
- URL: http://arxiv.org/abs/2208.01996v2
- Date: Sun, 9 Jul 2023 13:23:14 GMT
- Title: Adaptive Domain Generalization via Online Disagreement Minimization
- Authors: Xin Zhang, Ying-Cong Chen
- Abstract summary: Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
- Score: 17.215683606365445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks suffer from significant performance deterioration when
there exists distribution shift between deployment and training. Domain
Generalization (DG) aims to safely transfer a model to unseen target domains by
only relying on a set of source domains. Although various DG approaches have
been proposed, a recent study named DomainBed, reveals that most of them do not
beat the simple Empirical Risk Minimization (ERM). To this end, we propose a
general framework that is orthogonal to existing DG algorithms and could
improve their performance consistently. Unlike previous DG works that stake on
a static source model to be hopefully a universal one, our proposed AdaODM
adaptively modifies the source model at test time for different target domains.
Specifically, we create multiple domain-specific classifiers upon a shared
domain-generic feature extractor. The feature extractor and classifiers are
trained in an adversarial way, where the feature extractor embeds the input
samples into a domain-invariant space, and the multiple classifiers capture the
distinct decision boundaries that each of them relates to a specific source
domain. During testing, distribution differences between target and source
domains could be effectively measured by leveraging prediction disagreement
among source classifiers. By fine-tuning source models to minimize the
disagreement at test time, target domain features are well aligned to the
invariant feature space. We verify AdaODM on two popular DG methods, namely ERM
and CORAL, and four DG benchmarks, namely VLCS, PACS, OfficeHome, and
TerraIncognita. The results show AdaODM stably improves the generalization
capacity on unseen domains and achieves state-of-the-art performance.
Related papers
- Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer [69.82229895838577]
Active Domain Adaptation (ADA) aims to maximally boost model adaptation in a new target domain by actively selecting a limited number of target data to annotate.
This setting neglects the more practical scenario where training data are collected from multiple sources.
This motivates us to target a new and challenging setting of knowledge transfer that extends ADA from a single source domain to multiple source domains.
arXiv Detail & Related papers (2023-11-21T13:12:21Z) - Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation [3.367755441623275]
Multi-source unsupervised domain adaptation (MUDA) aims to transfer knowledge from related source domains to an unlabeled target domain.
We propose a novel approach called Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation (D3AAMDA)
This mechanism controls the alignment level of features between each source domain and the target domain, effectively leveraging the local advantageous feature information within the source domains.
arXiv Detail & Related papers (2023-07-26T09:40:19Z) - Domain Generalization through the Lens of Angular Invariance [44.76809026901016]
Domain generalization (DG) aims at generalizing a classifier trained on multiple source domains to an unseen target domain with domain shift.
We propose a novel deep DG method called Angular Invariance Domain Generalization Network (AIDGN)
arXiv Detail & Related papers (2022-10-28T02:05:38Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - From Big to Small: Adaptive Learning to Partial-Set Domains [94.92635970450578]
Domain adaptation targets at knowledge acquisition and dissemination from a labeled source domain to an unlabeled target domain under distribution shift.
Recent advances show that deep pre-trained models of large scale endow rich knowledge to tackle diverse downstream tasks of small scale.
This paper introduces Partial Domain Adaptation (PDA), a learning paradigm that relaxes the identical class space assumption to that the source class space subsumes the target class space.
arXiv Detail & Related papers (2022-03-14T07:02:45Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
Domain generalization (DG) deals with the problem of domain shift where a machine learning model trained on multiple-source domains fail to generalize well on a target domain with different statistics.
Multiple approaches have been proposed to solve the problem of domain generalization by learning domain invariant representations across the source domains that fail to guarantee generalization on the shifted target domain.
We propose a Generative Nearest Neighbor based Discrepancy Minimization (GNNDM) method which provides a theoretical guarantee that is upper bounded by the error in the labeling process of the target.
arXiv Detail & Related papers (2020-07-28T14:54:25Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.