A protocol of potential advantage in the low frequency range to
gravitational wave detection with space based optical atomic clocks
- URL: http://arxiv.org/abs/2005.06817v1
- Date: Thu, 14 May 2020 08:56:58 GMT
- Title: A protocol of potential advantage in the low frequency range to
gravitational wave detection with space based optical atomic clocks
- Authors: Feifan He and Baocheng Zhang
- Abstract summary: We propose a new measurement method for gravitational wave detection in low frequency with optical lattice atomic clocks.
Our result is timely for the ongoing development of space-born observatories aimed at studying physical and astrophysical effects associated with low-frequency GW.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A recent proposal describes space based gravitational wave (GW) detection
with optical lattice atomic clocks [Kolkowitz et. al., Phys. Rev. D 94, 124043
(2016)] [1]. Based on their setup, we propose a new measurement method for
gravitational wave detection in low frequency with optical lattice atomic
clocks. In our method, n successive Doppler signals are collected and the
summation for all these signals is made to improve the sensitivity of the
low-frequency GW detection. In particular, the improvement is adjustable by the
number of Doppler signals, which is equivalent to that the length between two
atomic clocks is increased. Thus, the same sensitivity can be reached but with
shorter distance, even though the acceleration noises lead to failing to
achieve the anticipated improvement below the inflection point of frequency
which is determined by the quantum projection noise. Our result is timely for
the ongoing development of space-born observatories aimed at studying physical
and astrophysical effects associated with low-frequency GW.
Related papers
- Generation of squeezed vacuum state in the millihertz frequency band [22.113661605360104]
We report on the first direct observation of a squeezed vacuum field until Fourier frequency of 4 millihertz with the quantum noise reduction of up to 8 dB.
Our work provides quantum resources for future gravitational wave observatories, facilitating the development of quantum precision measurement.
arXiv Detail & Related papers (2024-08-20T07:39:21Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Optimal baseline exploitation in vertical dark-matter detectors based on
atom interferometry [50.06952271801328]
Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final planning stages or already under construction.
We show that resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal, shot-noise limited, sensitivity if their height constitutes 20% of the available baseline.
arXiv Detail & Related papers (2023-09-08T08:38:24Z) - Boosting the sensitivity of high frequency gravitational wave detectors
by PT-symmetry [9.717134926446956]
Current laser interferometer gravitational wave detectors have limited signal response at the kilo-Hertz band.
This work proposes an alternative protocol for boosting the sensitivity of the gravitational wave detectors at high frequency.
With the auxiliary quantum amplifier, this design has the feature of Parity-Time (PT) symmetry so that the detection band will be significantly broadened.
arXiv Detail & Related papers (2022-06-24T09:18:39Z) - Nondegenerate internal squeezing: an all-optical, loss-resistant quantum
technique for gravitational-wave detection [0.0]
We investigate nondegenerate internal squeezing: optical parametric oscillation inside the signal-recycling cavity with distinct signal-mode and idler-mode frequencies.
This technique is tolerant to decoherence from optical detection loss and is feasible for broadband sensitivity enhancement.
arXiv Detail & Related papers (2022-06-14T00:16:42Z) - Resolving the gravitational redshift within a millimeter atomic sample [94.94540201762686]
Einstein's theory of general relativity states that clocks at different gravitational potentials tick at different rates.
We measure a linear frequency gradient consistent with the gravitational redshift within a single millimeter scale sample of ultracold strontium.
arXiv Detail & Related papers (2021-09-24T23:58:35Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with deep learning.
We analyze eight gravitational-wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog.
We find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to a minute per event.
arXiv Detail & Related papers (2021-06-23T18:00:05Z) - Quantum Enhanced Interferometer for Kilohertz Gravitational Wave
Detection [3.792164348816756]
We present a new type broadband high frequency laser interferometer gravitational wave detector utilizing polarization of light as signal carrier.
A novel method of weak measurement amplification is used to amplify signals for detection and to guarantee the long-term run of detector.
With the proposed detector added in the current detection network, we show that the ability of exploring binary neutron stars merger physics be significantly improved.
arXiv Detail & Related papers (2020-07-08T09:29:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.