Nondegenerate internal squeezing: an all-optical, loss-resistant quantum
technique for gravitational-wave detection
- URL: http://arxiv.org/abs/2206.06529v2
- Date: Mon, 11 Jul 2022 18:04:58 GMT
- Title: Nondegenerate internal squeezing: an all-optical, loss-resistant quantum
technique for gravitational-wave detection
- Authors: James W. Gardner, Min Jet Yap, Vaishali Adya, Sheon Chua, Bram J. J.
Slagmolen, and David E. McClelland
- Abstract summary: We investigate nondegenerate internal squeezing: optical parametric oscillation inside the signal-recycling cavity with distinct signal-mode and idler-mode frequencies.
This technique is tolerant to decoherence from optical detection loss and is feasible for broadband sensitivity enhancement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection of kilohertz-band gravitational waves promises discoveries in
astrophysics, exotic matter, and cosmology. To improve the kilohertz quantum
noise-limited sensitivity of interferometric gravitational-wave detectors, we
investigate nondegenerate internal squeezing: optical parametric oscillation
inside the signal-recycling cavity with distinct signal-mode and idler-mode
frequencies. We use an analytic Hamiltonian model to show that this stable,
all-optical technique is tolerant to decoherence from optical detection loss
and that it, with its optimal readout scheme, is feasible for broadband
sensitivity enhancement.
Related papers
- Frequency-dependent squeezing for gravitational-wave detection through quantum teleportation [4.647804073850528]
Ground-based interferometric gravitational wave detectors are highly precise sensors for weak forces.
Current and future instruments address this limitation by injecting frequency-dependent squeezed vacuum into the detection port.
This study introduces a novel scheme employing the principles of quantum teleportation and entangled states of light.
arXiv Detail & Related papers (2024-01-09T00:26:25Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Dissipative Quantum Feedback in Measurements Using a Parametrically
Coupled Microcavity [0.0]
Micro- and nanoscale optical or microwave cavities are used in a wide range of classical applications and quantum science experiments.
Dissipative photon absorption can result in quantum feedback via in-loop field detection of the absorbed optical field.
We experimentally observe such unanticipated dissipative dynamics in optomechanical spectroscopy of sideband-cooled optomechanical crystal cavities.
arXiv Detail & Related papers (2021-09-29T15:12:45Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Enhancing interferometer sensitivity without sacrificing bandwidth and
stability: beyond single-mode and resolved-sideband approximation [9.253130051773992]
Quantum noise limits the sensitivity of precision measurement devices, such as laser interferometer gravitational-wave observatories and axion detectors.
One approach to circumvent this limitation in gravitational-wave detectors is to embed an anomalous-dispersion optomechanical filter to broaden the bandwidth.
The original filter cavity design, however, makes the entire system unstable.
Recently, we proposed the coherent feedback between the arm cavity and the optomechanical filter to eliminate the instability via PT-symmetry.
We show that the main conclusion concerning stability remains intact, with both Nyquist analysis and a detailed time-domain simulation.
arXiv Detail & Related papers (2021-04-06T16:33:08Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - A protocol of potential advantage in the low frequency range to
gravitational wave detection with space based optical atomic clocks [0.0]
We propose a new measurement method for gravitational wave detection in low frequency with optical lattice atomic clocks.
Our result is timely for the ongoing development of space-born observatories aimed at studying physical and astrophysical effects associated with low-frequency GW.
arXiv Detail & Related papers (2020-05-14T08:56:58Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Thermal intermodulation noise in cavity-based measurements [0.0]
We show that nonlinearly transduced thermal fluctuations of cavity frequency can dominate the broadband noise in photodetection.
We report and characterize thermal intermodulation noise in an optomechanical cavity, where the frequency fluctuations are caused by mechanical Brownian motion.
arXiv Detail & Related papers (2020-04-12T21:24:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.