Ethical Adversaries: Towards Mitigating Unfairness with Adversarial
Machine Learning
- URL: http://arxiv.org/abs/2005.06852v2
- Date: Tue, 1 Sep 2020 16:47:17 GMT
- Title: Ethical Adversaries: Towards Mitigating Unfairness with Adversarial
Machine Learning
- Authors: Pieter Delobelle and Paul Temple and Gilles Perrouin and Beno\^it
Fr\'enay and Patrick Heymans and Bettina Berendt
- Abstract summary: Individuals, as well as organisations, notice, test, and criticize unfair results to hold model designers and deployers accountable.
We offer a framework that assists these groups in mitigating unfair representations stemming from the training datasets.
Our framework relies on two inter-operating adversaries to improve fairness.
- Score: 8.436127109155008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning is being integrated into a growing number of critical
systems with far-reaching impacts on society. Unexpected behaviour and unfair
decision processes are coming under increasing scrutiny due to this widespread
use and its theoretical considerations. Individuals, as well as organisations,
notice, test, and criticize unfair results to hold model designers and
deployers accountable. We offer a framework that assists these groups in
mitigating unfair representations stemming from the training datasets. Our
framework relies on two inter-operating adversaries to improve fairness. First,
a model is trained with the goal of preventing the guessing of protected
attributes' values while limiting utility losses. This first step optimizes the
model's parameters for fairness. Second, the framework leverages evasion
attacks from adversarial machine learning to generate new examples that will be
misclassified. These new examples are then used to retrain and improve the
model in the first step. These two steps are iteratively applied until a
significant improvement in fairness is obtained. We evaluated our framework on
well-studied datasets in the fairness literature -- including COMPAS -- where
it can surpass other approaches concerning demographic parity, equality of
opportunity and also the model's utility. We also illustrate our findings on
the subtle difficulties when mitigating unfairness and highlight how our
framework can assist model designers.
Related papers
- From Efficiency to Equity: Measuring Fairness in Preference Learning [3.2132738637761027]
We evaluate fairness in preference learning models inspired by economic theories of inequality and Rawlsian justice.
We propose metrics adapted from the Gini Coefficient, Atkinson Index, and Kuznets Ratio to quantify fairness in these models.
arXiv Detail & Related papers (2024-10-24T15:25:56Z) - FairDgcl: Fairness-aware Recommendation with Dynamic Graph Contrastive Learning [48.38344934125999]
We study how to implement high-quality data augmentation to improve recommendation fairness.
Specifically, we propose FairDgcl, a dynamic graph adversarial contrastive learning framework.
We show that FairDgcl can simultaneously generate enhanced representations that possess both fairness and accuracy.
arXiv Detail & Related papers (2024-10-23T04:43:03Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
In many machine learning (ML) tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance.
In this paper, we define the fairness-aware learning task with limited training samples as the emphfair few-shot learning problem.
We devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks.
arXiv Detail & Related papers (2023-08-28T06:31:37Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Optimising Equal Opportunity Fairness in Model Training [60.0947291284978]
Existing debiasing methods, such as adversarial training and removing protected information from representations, have been shown to reduce bias.
We propose two novel training objectives which directly optimise for the widely-used criterion of it equal opportunity, and show that they are effective in reducing bias while maintaining high performance over two classification tasks.
arXiv Detail & Related papers (2022-05-05T01:57:58Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - FAIR: Fair Adversarial Instance Re-weighting [0.7829352305480285]
We propose a Fair Adrial Instance Re-weighting (FAIR) method, which uses adversarial training to learn instance weighting function that ensures fair predictions.
To the best of our knowledge, this is the first model that merges reweighting and adversarial approaches by means of a weighting function that can provide interpretable information about fairness of individual instances.
arXiv Detail & Related papers (2020-11-15T10:48:56Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z) - FairALM: Augmented Lagrangian Method for Training Fair Models with
Little Regret [42.66567001275493]
It is now accepted that because of biases in the datasets we present to the models, a fairness-oblivious training will lead to unfair models.
Here, we study mechanisms that impose fairness concurrently while training the model.
arXiv Detail & Related papers (2020-04-03T03:18:53Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
We propose a new definition of fairness that emphasises the role of an external auditor and model explicability.
We develop a framework for mitigating model bias using regularizations constructed from the SHAP values of an adversarial surrogate model.
We demonstrate our approaches using gradient and adaptive boosting on: a synthetic dataset, the UCI Adult (Census) dataset and a real-world credit scoring dataset.
arXiv Detail & Related papers (2020-03-11T14:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.