FairDgcl: Fairness-aware Recommendation with Dynamic Graph Contrastive Learning
- URL: http://arxiv.org/abs/2410.17555v1
- Date: Wed, 23 Oct 2024 04:43:03 GMT
- Title: FairDgcl: Fairness-aware Recommendation with Dynamic Graph Contrastive Learning
- Authors: Wei Chen, Meng Yuan, Zhao Zhang, Ruobing Xie, Fuzhen Zhuang, Deqing Wang, Rui Liu,
- Abstract summary: We study how to implement high-quality data augmentation to improve recommendation fairness.
Specifically, we propose FairDgcl, a dynamic graph adversarial contrastive learning framework.
We show that FairDgcl can simultaneously generate enhanced representations that possess both fairness and accuracy.
- Score: 48.38344934125999
- License:
- Abstract: As trustworthy AI continues to advance, the fairness issue in recommendations has received increasing attention. A recommender system is considered unfair when it produces unequal outcomes for different user groups based on user-sensitive attributes (e.g., age, gender). Some researchers have proposed data augmentation-based methods aiming at alleviating user-level unfairness by altering the skewed distribution of training data among various user groups. Despite yielding promising results, they often rely on fairness-related assumptions that may not align with reality, potentially reducing the data quality and negatively affecting model effectiveness. To tackle this issue, in this paper, we study how to implement high-quality data augmentation to improve recommendation fairness. Specifically, we propose FairDgcl, a dynamic graph adversarial contrastive learning framework aiming at improving fairness in recommender system. First, FairDgcl develops an adversarial contrastive network with a view generator and a view discriminator to learn generating fair augmentation strategies in an adversarial style. Then, we propose two dynamic, learnable models to generate contrastive views within contrastive learning framework, which automatically fine-tune the augmentation strategies. Meanwhile, we theoretically show that FairDgcl can simultaneously generate enhanced representations that possess both fairness and accuracy. Lastly, comprehensive experiments conducted on four real-world datasets demonstrate the effectiveness of the proposed FairDgcl.
Related papers
- Data Augmentation via Subgroup Mixup for Improving Fairness [31.296907816698987]
We propose data augmentation via pairwise mixup across subgroups to improve group fairness.
Inspired by the successes of mixup for improving classification performance, we develop a pairwise mixup scheme to augment training data.
arXiv Detail & Related papers (2023-09-13T17:32:21Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
We propose a fine-grained data augmentation strategy for imposing fairness constraints.
We show that group fairness can be achieved by regularizing the models on transition paths of sensitive features between groups.
Our proposed method does not assume any data generative model and ensures good generalization for both accuracy and fairness.
arXiv Detail & Related papers (2023-04-01T11:23:00Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
Collaborative filtering based recommendation learns users' preferences from all users' historical behavior data, and has been popular to facilitate decision making.
A recommender system is considered unfair when it does not perform equally well for different user groups according to users' sensitive attributes.
In this paper, we study how to improve recommendation fairness from the data augmentation perspective.
arXiv Detail & Related papers (2023-02-13T13:11:46Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
Graph neural network (GNN) based methods have saturated the field of recommender systems.
We extend an existing method for promoting individual fairness on graphs to support mini-batch, or sub-sample based, training of a GNN.
We show that mini-batch training facilitate individual fairness promotion by allowing for local nuance to guide the process of fairness promotion in representation learning.
arXiv Detail & Related papers (2022-09-08T16:20:25Z) - Fair Contrastive Learning for Facial Attribute Classification [25.436462696033846]
We propose a new Fair Supervised Contrastive Loss (FSCL) for fair visual representation learning.
In this paper, we for the first time analyze unfairness caused by supervised contrastive learning.
Our method is robust to the intensity of data bias and effectively works in incomplete supervised settings.
arXiv Detail & Related papers (2022-03-30T11:16:18Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z) - Ethical Adversaries: Towards Mitigating Unfairness with Adversarial
Machine Learning [8.436127109155008]
Individuals, as well as organisations, notice, test, and criticize unfair results to hold model designers and deployers accountable.
We offer a framework that assists these groups in mitigating unfair representations stemming from the training datasets.
Our framework relies on two inter-operating adversaries to improve fairness.
arXiv Detail & Related papers (2020-05-14T10:10:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.