From Simulation to Real World Maneuver Execution using Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2005.07023v4
- Date: Wed, 28 Apr 2021 08:11:02 GMT
- Title: From Simulation to Real World Maneuver Execution using Deep
Reinforcement Learning
- Authors: Alessandro Paolo Capasso, Giulio Bacchiani, Alberto Broggi
- Abstract summary: Deep Reinforcement Learning has proved to be able to solve many control tasks in different fields, but the behavior of these systems is not always as expected when deployed in real-world scenarios.
This is mainly due to the lack of domain adaptation between simulated and real-world data together with the absence of distinction between train and test datasets.
We present a system based on multiple environments in which agents are trained simultaneously, evaluating the behavior of the model in different scenarios.
- Score: 69.23334811890919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Reinforcement Learning has proved to be able to solve many control tasks
in different fields, but the behavior of these systems is not always as
expected when deployed in real-world scenarios. This is mainly due to the lack
of domain adaptation between simulated and real-world data together with the
absence of distinction between train and test datasets. In this work, we
investigate these problems in the autonomous driving field, especially for a
maneuver planning module for roundabout insertions. In particular, we present a
system based on multiple environments in which agents are trained
simultaneously, evaluating the behavior of the model in different scenarios.
Finally, we analyze techniques aimed at reducing the gap between simulated and
real-world data showing that this increased the generalization capabilities of
the system both on unseen and real-world scenarios.
Related papers
- Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models [60.87795376541144]
A world model is a neural network capable of predicting an agent's next state given past states and actions.
During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations.
We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing.
arXiv Detail & Related papers (2024-09-25T06:48:25Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
Multimodal foundation models serve numerous applications at the intersection of vision and language.
To keep models updated, research into continual pretraining mainly explores scenarios with either infrequent, indiscriminate updates on large-scale new data, or frequent, sample-level updates.
We introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements.
arXiv Detail & Related papers (2024-08-26T17:59:01Z) - Staged Reinforcement Learning for Complex Tasks through Decomposed
Environments [4.883558259729863]
We discuss two methods that approximate RL problems to real problems.
In the context of traffic junction simulations, we demonstrate that, if we can decompose a complex task into multiple sub-tasks, solving these tasks first can be advantageous.
From a multi-agent perspective, we introduce a training structuring mechanism that exploits the use of experience learned under the popular paradigm called Centralised Training Decentralised Execution (CTDE)
arXiv Detail & Related papers (2023-11-05T19:43:23Z) - Invariance is Key to Generalization: Examining the Role of
Representation in Sim-to-Real Transfer for Visual Navigation [35.01394611106655]
Key to generalization is representations that are rich enough to capture all task-relevant information.
We experimentally study such a representation for visual navigation.
We show that our representation reduces the A-distance between the training and test domains.
arXiv Detail & Related papers (2023-10-23T15:15:19Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Navigating to Objects in the Real World [76.1517654037993]
We present a large-scale empirical study of semantic visual navigation methods comparing methods from classical, modular, and end-to-end learning approaches.
We find that modular learning works well in the real world, attaining a 90% success rate.
In contrast, end-to-end learning does not, dropping from 77% simulation to 23% real-world success rate due to a large image domain gap between simulation and reality.
arXiv Detail & Related papers (2022-12-02T01:10:47Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Cycle-Consistent World Models for Domain Independent Latent Imagination [0.0]
High costs and risks make it hard to train autonomous cars in the real world.
We propose a novel model-based reinforcement learning approach called Cycleconsistent World Models.
arXiv Detail & Related papers (2021-10-02T13:55:50Z) - DR2L: Surfacing Corner Cases to Robustify Autonomous Driving via Domain
Randomization Reinforcement Learning [4.040937987024427]
Domain Randomization(DR) is a methodology that can bridge this gap with little or no real-world data.
An adversarial model is put forward to robustify DeepRL-based autonomous vehicles trained in simulation.
arXiv Detail & Related papers (2021-07-25T09:15:46Z) - Zero-Shot Reinforcement Learning with Deep Attention Convolutional
Neural Networks [12.282277258055542]
We show that a deep attention convolutional neural network (DACNN) with specific visual sensor configuration performs as well as training on a dataset with high domain and parameter variation at lower computational complexity.
Our new architecture adapts perception with respect to the control objective, resulting in zero-shot learning without pre-training a perception network.
arXiv Detail & Related papers (2020-01-02T19:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.