STaRFormer: Semi-Supervised Task-Informed Representation Learning via Dynamic Attention-Based Regional Masking for Sequential Data
- URL: http://arxiv.org/abs/2504.10097v1
- Date: Mon, 14 Apr 2025 11:03:19 GMT
- Title: STaRFormer: Semi-Supervised Task-Informed Representation Learning via Dynamic Attention-Based Regional Masking for Sequential Data
- Authors: Maxmilian Forstenhäusler, Daniel Külzer, Christos Anagnostopoulos, Shameem Puthiya Parambath, Natascha Weber,
- Abstract summary: Transformer-based approach, STaRFormer, serves as a universal framework for sequential modeling.<n> STaRFormer employs a novel, dynamic attention-based regional masking scheme combined with semi-supervised contrastive learning to enhance task-specific latent representations.
- Score: 4.351581973358463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate predictions using sequential spatiotemporal data are crucial for various applications. Utilizing real-world data, we aim to learn the intent of a smart device user within confined areas of a vehicle's surroundings. However, in real-world scenarios, environmental factors and sensor limitations result in non-stationary and irregularly sampled data, posing significant challenges. To address these issues, we developed a Transformer-based approach, STaRFormer, which serves as a universal framework for sequential modeling. STaRFormer employs a novel, dynamic attention-based regional masking scheme combined with semi-supervised contrastive learning to enhance task-specific latent representations. Comprehensive experiments on 15 datasets varying in types (including non-stationary and irregularly sampled), domains, sequence lengths, training samples, and applications, demonstrate the efficacy and practicality of STaRFormer. We achieve notable improvements over state-of-the-art approaches. Code and data will be made available.
Related papers
- Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - Invariance is Key to Generalization: Examining the Role of
Representation in Sim-to-Real Transfer for Visual Navigation [35.01394611106655]
Key to generalization is representations that are rich enough to capture all task-relevant information.
We experimentally study such a representation for visual navigation.
We show that our representation reduces the A-distance between the training and test domains.
arXiv Detail & Related papers (2023-10-23T15:15:19Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by
Leveraging Lightweight All-ConvNet and Transfer Learning [17.535392299244066]
Gesture recognition using low-resolution instantaneous HD-sEMG images opens up new avenues for the development of more fluid and natural muscle-computer interfaces.
The data variability between inter-session and inter-subject scenarios presents a great challenge.
Existing approaches employed very large and complex deep ConvNet or 2SRNN-based domain adaptation methods to approximate the distribution shift caused by these inter-session and inter-subject data variability.
We propose a lightweight All-ConvNet+TL model that leverages lightweight All-ConvNet and transfer learning (TL) for the enhancement of inter-session and inter-subject gesture recognition
arXiv Detail & Related papers (2023-05-13T21:47:55Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Neural-Sim: Learning to Generate Training Data with NeRF [31.81496344354997]
We present the first fully differentiable synthetic data pipeline that uses Neural Radiance Fields (NeRFs) in a closed-loop with a target application's loss function.
Our approach generates data on-demand, with no human labor, to maximize accuracy for a target task.
arXiv Detail & Related papers (2022-07-22T22:48:33Z) - Temporal Predictive Coding For Model-Based Planning In Latent Space [80.99554006174093]
We present an information-theoretic approach that employs temporal predictive coding to encode elements in the environment that can be predicted across time.
We evaluate our model on a challenging modification of standard DMControl tasks where the background is replaced with natural videos that contain complex but irrelevant information to the planning task.
arXiv Detail & Related papers (2021-06-14T04:31:15Z) - From Simulation to Real World Maneuver Execution using Deep
Reinforcement Learning [69.23334811890919]
Deep Reinforcement Learning has proved to be able to solve many control tasks in different fields, but the behavior of these systems is not always as expected when deployed in real-world scenarios.
This is mainly due to the lack of domain adaptation between simulated and real-world data together with the absence of distinction between train and test datasets.
We present a system based on multiple environments in which agents are trained simultaneously, evaluating the behavior of the model in different scenarios.
arXiv Detail & Related papers (2020-05-13T14:22:20Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.