Simulation-Based Inference for Global Health Decisions
- URL: http://arxiv.org/abs/2005.07062v1
- Date: Thu, 14 May 2020 15:29:45 GMT
- Title: Simulation-Based Inference for Global Health Decisions
- Authors: Christian Schroeder de Witt, Bradley Gram-Hansen, Nantas Nardelli,
Andrew Gambardella, Rob Zinkov, Puneet Dokania, N. Siddharth, Ana Belen
Espinosa-Gonzalez, Ara Darzi, Philip Torr, At{\i}l{\i}m G\"une\c{s} Baydin
- Abstract summary: We discuss recent breakthroughs in machine learning, specifically in simulation-based inference.
To further stimulate research, we are developing software interfaces that turn two cornerstone COVID-19 and malaria epidemiology models into probabilistic programs.
- Score: 9.850436827722419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic has highlighted the importance of in-silico
epidemiological modelling in predicting the dynamics of infectious diseases to
inform health policy and decision makers about suitable prevention and
containment strategies. Work in this setting involves solving challenging
inference and control problems in individual-based models of ever increasing
complexity. Here we discuss recent breakthroughs in machine learning,
specifically in simulation-based inference, and explore its potential as a
novel venue for model calibration to support the design and evaluation of
public health interventions. To further stimulate research, we are developing
software interfaces that turn two cornerstone COVID-19 and malaria epidemiology
models COVID-sim, (https://github.com/mrc-ide/covid-sim/) and OpenMalaria
(https://github.com/SwissTPH/openmalaria) into probabilistic programs, enabling
efficient interpretable Bayesian inference within those simulators.
Related papers
- Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
This paper outlines an approach in the domain of federated survival analysis, specifically the Cox Proportional Hazards (CoxPH) model.
We present an FL approach that employs feature-based clustering to enhance model accuracy across synthetic datasets and real-world applications.
arXiv Detail & Related papers (2024-07-20T18:34:20Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
Compartmental epidemiological models categorize individuals based on their disease status.
We propose an ABM architecture that combines an adapted SEIRD model with a decision-making model for citizens.
We illustrate the designed model by examining the progression of SARS-CoV-2 infections in A Coruna, Spain.
arXiv Detail & Related papers (2023-07-28T08:01:05Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Discrete Stochastic Optimization for Public Health Interventions with
Constraints [1.8275108630751844]
This paper addresses aspects of the 2009 H1N1 and the COVID-19 pandemics with the spread of disease modeled by the open source Monte Carlo simulations.
The objective of the optimization is to determine the best combination of intervention strategies so as to result in minimal economic loss to society.
arXiv Detail & Related papers (2022-06-27T21:21:25Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - Compartmental Models for COVID-19 and Control via Policy Interventions [0.0]
We demonstrate an approach to replicate and forecast the spread of the SARS-CoV-2 pandemic using the toolkit of probabilistic programming languages (PPLs)
Our goal is to study the impact of various modeling assumptions and motivate policy interventions enacted to limit the spread of infectious diseases.
We are not epidemiologists; the sole aim of this study is to serve as an exposition of methods, not to directly infer the real-world impact of policy-making for COVID-19.
arXiv Detail & Related papers (2022-03-06T02:50:54Z) - Multi-scale simulation of COVID-19 epidemics [0.0]
We are still facing the COVID-19 epidemics over a year after the start of the COVID-19 epidemics.
It is hard to correctly predict its future spread over weeks to come, as well as the impacts of potential political interventions.
Current epidemic models mainly fall in two approaches: compartmental models, divide the population in epidemiological classes and rely on the mathematical resolution of differential equations.
arXiv Detail & Related papers (2021-12-02T12:34:11Z) - Pyfectious: An individual-level simulator to discover optimal
containment polices for epidemic diseases [16.28189705178286]
We introduce a simulator capable of modeling a population structure and controlling the disease's propagation at an individualistic level.
To showcase potential applications, the simulator parameters are set based on the formal statistics of the COVID-19 pandemic.
The simulator is used as the environment of a reinforcement learning problem to find the optimal policies to control the pandemic.
arXiv Detail & Related papers (2021-03-24T10:54:46Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.