Named Entity Recognition as Dependency Parsing
- URL: http://arxiv.org/abs/2005.07150v3
- Date: Sat, 13 Jun 2020 10:55:10 GMT
- Title: Named Entity Recognition as Dependency Parsing
- Authors: Juntao Yu and Bernd Bohnet and Massimo Poesio
- Abstract summary: We use graph-based dependency parsing to provide our model a global view on the input via a biaffine model.
We show that the model works well for both nested and flat NER through evaluation on 8 corpora and achieving SoTA performance on all of them, with accuracy gains of up to 2.2 percentage points.
- Score: 16.544333689188246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Named Entity Recognition (NER) is a fundamental task in Natural Language
Processing, concerned with identifying spans of text expressing references to
entities. NER research is often focused on flat entities only (flat NER),
ignoring the fact that entity references can be nested, as in [Bank of [China]]
(Finkel and Manning, 2009). In this paper, we use ideas from graph-based
dependency parsing to provide our model a global view on the input via a
biaffine model (Dozat and Manning, 2017). The biaffine model scores pairs of
start and end tokens in a sentence which we use to explore all spans, so that
the model is able to predict named entities accurately. We show that the model
works well for both nested and flat NER through evaluation on 8 corpora and
achieving SoTA performance on all of them, with accuracy gains of up to 2.2
percentage points.
Related papers
- Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time.
Our results on FUNSD, CORD, XFUNDIE show that our method can effectively improve the performance of semantic entity recognition tasks.
arXiv Detail & Related papers (2024-07-09T14:35:49Z) - Entity Disambiguation via Fusion Entity Decoding [68.77265315142296]
We propose an encoder-decoder model to disambiguate entities with more detailed entity descriptions.
We observe +1.5% improvements in end-to-end entity linking in the GERBIL benchmark compared with EntQA.
arXiv Detail & Related papers (2024-04-02T04:27:54Z) - Named Entity Recognition via Machine Reading Comprehension: A Multi-Task
Learning Approach [50.12455129619845]
Named Entity Recognition (NER) aims to extract and classify entity mentions in the text into pre-defined types.
We propose to incorporate the label dependencies among entity types into a multi-task learning framework for better MRC-based NER.
arXiv Detail & Related papers (2023-09-20T03:15:05Z) - SpanProto: A Two-stage Span-based Prototypical Network for Few-shot
Named Entity Recognition [45.012327072558975]
Few-shot Named Entity Recognition (NER) aims to identify named entities with very little annotated data.
We propose a seminal span-based prototypical network (SpanProto) that tackles few-shot NER via a two-stage approach.
In the span extraction stage, we transform the sequential tags into a global boundary matrix, enabling the model to focus on the explicit boundary information.
For mention classification, we leverage prototypical learning to capture the semantic representations for each labeled span and make the model better adapt to novel-class entities.
arXiv Detail & Related papers (2022-10-17T12:59:33Z) - Bottom-Up Constituency Parsing and Nested Named Entity Recognition with
Pointer Networks [24.337440797369702]
Constituency parsing and nested named entity recognition (NER) are typical textitnested structured prediction tasks.
We propose a novel global pointing mechanism for bottom-up parsing with pointer networks to do both tasks, which needs linear steps to parse.
Our method obtains the state-of-the-art performance on PTB among all BERT-based models (96.01 F1 score) and competitive performance on CTB7 in constituency parsing.
arXiv Detail & Related papers (2021-10-11T17:01:43Z) - X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented
Compositional Semantic Parsing [51.81533991497547]
Task-oriented compositional semantic parsing (TCSP) handles complex nested user queries.
We present X2 compared a transferable Cross-lingual and Cross-domain for TCSP.
We propose to predict flattened intents and slots representations separately and cast both prediction tasks into sequence labeling problems.
arXiv Detail & Related papers (2021-06-07T16:40:05Z) - LUKE: Deep Contextualized Entity Representations with Entity-aware
Self-attention [37.111204321059084]
We propose new pretrained contextualized representations of words and entities based on the bidirectional transformer.
Our model is trained using a new pretraining task based on the masked language model of BERT.
We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer.
arXiv Detail & Related papers (2020-10-02T15:38:03Z) - A Simple Global Neural Discourse Parser [61.728994693410954]
We propose a simple chart-based neural discourse that does not require any manually-crafted features and is based on learned span representations only.
We empirically demonstrate that our model achieves the best performance among globals, and comparable performance to state-of-art greedys.
arXiv Detail & Related papers (2020-09-02T19:28:40Z) - Named Entity Recognition without Labelled Data: A Weak Supervision
Approach [23.05371427663683]
This paper presents a simple but powerful approach to learn NER models in the absence of labelled data through weak supervision.
The approach relies on a broad spectrum of labelling functions to automatically annotate texts from the target domain.
A sequence labelling model can finally be trained on the basis of this unified annotation.
arXiv Detail & Related papers (2020-04-30T12:29:55Z) - Beheshti-NER: Persian Named Entity Recognition Using BERT [0.0]
In this paper, we use the pre-trained deep bidirectional network, BERT, to make a model for named entity recognition in Persian.
Our results are 83.5 and 88.4 f1 CONLL score respectively in phrase and word level evaluation.
arXiv Detail & Related papers (2020-03-19T15:55:21Z) - Zero-Resource Cross-Domain Named Entity Recognition [68.83177074227598]
Existing models for cross-domain named entity recognition rely on numerous unlabeled corpus or labeled NER training data in target domains.
We propose a cross-domain NER model that does not use any external resources.
arXiv Detail & Related papers (2020-02-14T09:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.